1.C.S. 87

SINTEKNATIONAL Conrerence ON

UPERCOMPUTING

Supercomputer architectures. 1echnology. software (operaling systems, Compiters),
theory of paralle! processing, paraliet numerical analysis.apphicationg of supercompiiters 1o science and enguieering

JUNE 8-12,1987 ATHENS,GREECE
ORGANIZED AND SPONSORED BY THE COMPUTER TECHNOLOGY INSTITUTE (CT1) PATRAS, GREECE

Co-sponsored by ® Ministry of Industry, Energy and Technology of Greece ® Ministry of Culture and Sciences of Greece @ ACM
N G ation with ® | F |.P. WORKING GROUP 25 e SIAM Special Group on Supercomputing
® Purdue Center for Vaclor and Parailel processing ® Center for Supercomputing Research and Development, University of lthnors @ EATCS

PROGRAM COMMITTEE

D.J. Kuck, USA icnaman

T.S. Papatheodorou, Greece o cnwmam
J. Dongarra, USA

I, Duff, Engiand

E.N. Houstis, USA - Greece

P. Gaitney, Norway

J. Lenfant, France
D. Maritsas, Greece

INVITED SPEAKERS
Tiak Agerwala, 18M
Arvind, M/7

Steve Chen, Cray

Doug De Groot, USA
Jack Dongarra, Aigunne
lan Duff, Harwei
Geoffrey Fox, Caftech
Dennis Gannon, Indiana
Ron Gruner, Atiant

Ken Kennedy, Aice
David Kuck, timcrs
Jacques Lenfant, Rennes

G. Paul, USA Yoichi Muraoka, Waseda

Christos Papadimitriou, Stanfory
CD. Eolychronopoulos,USA 'John Rice. Purdie
J.R. Rice, USA

Ulrich Trottenberg, Suprenum

P. Spirakis, USA - Greece Kenneth Wilson, Cornelt

Proceedings Springer Vetlag

LRCEIEY U rana o
G et Vo
V o

ON THE PROCESSING TIME OF A PARALLEL LINEAR SYSTEM SOLVER
. : .o
Andreas STAFYLOPATIS
| and |

4Athanasios DRIGAS

Nationai Technical University of Athen§
Department of Electrical Engineering
Computer Science Diyision

' 153 73 Zographos, Athen%,AGreece

.‘;’

“Abstract

The speed—up,gbtained by thé use of multiprocessor systems
vigyof major--importance for ngmericalrépplications involving the
splution of large dense system§ of 1in¢ar equations. We are
ipterested heré in:the pgfformancevevaluation of an algorithm
f6r the parallei solution of 1inéar systems. The structure of
ghe algorithm's task graph is representative of a class of recen-
-ty proposed parallel linear system solvers. We develop a pro-
ygbilistic.model for two different parallel execution schemes
depending on’ the synchronization policy adopted. The analytical
§olution of the model provides the mean algorithm execution time
pd therefore the speed-up and gffitiency obtained with respect

¢ the single vrocessor environment.

%ﬁis work was supported by the General Secretariat of Research

gnd Technology of Greece, Grant No.9707."

1. . Introduction

The growing development of modern multiprocessor technology
provides an interesting alternative ,to the need of high computa-
tion speeds for the solution of large numerical applications. Ih
the last decade a considerable number of‘parallel algorithms have
been proposed, which should exploit the advantages of multiproces-
sor architectures. Some of these algorithms are parallel versions
of existing Sequenfial ones, other are completely new algorithms
[11, 127, fgj{k In all cases, the job is divided into a number
of tasks, each executing concurrently with other tasks. This de-
composition of a job into a set of tasks with well-defined inter-
dependencies is governed byvthé logical structure bf the parallel
algorithm, which is usually renresented by‘a computation graph,
'or task graph. The precedence relatioﬁs among tasks imply the
existence of sfhchronization points within the computatioﬁ, which
are the main factor limiting the effective‘parallelism of pro-
grams. An importént performance measure concerning the execu-
tion of parallel algorithms is the pro;essing time of a job des-
‘cribed by a computation graph, which is used to derive the speed-
up and the efficiency obtained with respect to the single proces-
sor case. | |

Several models have been proposed so far for the performance
evaluation of parallel algorithms. Let us quote, for instance,
models concerningvnumerical computations [3], [5], [7], tree-
structured algorithms [6], [8], or general program structures
[4]. In most cases, probabilistic models seem best adapfed for
the description of the issues involved in parallel computation.

In this paper, we consider a probabilistic model for the

execution of a parallel algorithm for solving linear systems.

This algorithm is a parallel implementa£ion of the Gauss-Jordan
method with partial pivoting [9], described by a task graph of
triangular structure with distinct. computation levels and parti-
cular precedence constraints. The interest of this graph is that
its general structure\ig the sameAfor several direct or iterative
linear system solveré involving various triangularisation techni-
ques [9], so that the model can beAusea for the comparative eva-
luation of a class of parallel algorithms. We consider two dif-
ferent synchronization policies resulfing to two parallel compu-
tation schemes. For the first one we obtain the exact solution
assﬁming an arbitrary number of available processors. For the
second policy, considering an infinite number of processors, we
develop an approximate solution, whose accuracy is validated by
simulation results.

In the next Section we describe fhe numerical- algorithm and
its nparallel implemghtation. Section 3 concerns the general fra-

mework for our modeling approach, whereas in Sections 4 and 5 we

present the model for the two synchronization policies considered.

2. The parallel algorithm

Let us consider the solution of linear algebraic equations

of thevform
Au =b B - (1)

where A is a real nonsingular dense matrix of order n, u is the
n-dimensional vector of unknowns and b is a given n-dimensional
vector. We consider the parallel implementation of the Gauss-Jor-

dan method with partial pivoting for solving (1). The Gauss-Jordan

’

algorithm is a variation of the classical Gauss-elimination me -
thod in that it reduces A into»a diagonal matrix instead of an
upper triangular,‘so that the sdlution vector u is obtained im-
mediately. In order to illustrate the decomposition of the al-
gorithm into a setbof tasks, we quote the sequential program for
the diagonalisation of the métrix A using the Gauss-Jordan me-

‘thod -[9]: |

ProgramkGAUSSJORDAN(A(n,n))
for k:=1to n do é |
Find ¢ such that
lA(l,k)}=max(|A(k,k)|,.;‘3|A(p,k)])

PIV(kK):=2 {pivot row}

A(PIV(X),k)«—A(k,k) .

c:=V/A(K,k) o k (2

for i:=1 to n do

Skip the value i=k

A(i,k)=A(i,K)xc - R]

for j:=k+1 to n do

A(PIV(k),j)«—A(k,]) i

for i:=1 to n do " . ¢

. ; ' Ti, j>k

Skip the value i=k :
A(i,j)=A(i,j)-A(i,K)xA(k,5) .

‘As showh in the program, we consider a task to be the code segment
which works on a particular column j for a particular value of k.
We denote a task by Tj, 1<k<j<n. Taking into account the prece-

dence constraints imposed by the sequential program, one can. veri-

fy that the set

Level

L »

Figure‘l

{Tk+1 Tk+2

. ‘
x 2 T seenT } , 1<k<n

k

is composed of mutually noninterfering, which could be executed
iniparallel. This decomposition résults to the maximally parallel
comﬁutationvgraph of Fig.l, where vertices represent tasks and di-
rected edges represent precedence relations. The compﬁtation
graph is characterized by fhe proceséing times of the tasks; as

a firsf approach, we can consider a deterministic evaluation.for
the processing'times., The execution of T§ reqﬁires n-k compari-
sons, 1 division and n-1 multiplications; assuming that one compa-
riSon or one arithmetic operation consitutes one time step, then
it follows tha£4T§ requires 2n-k time steps. Similarly the execu-
tion of Ti needs n-1 multiplications and n-1 subtractions, namely,
Zn-2 time steps. Thus, the procgsSing times of the tasks are gi-

ven by:

. 2n-k if k=j :
w(T}) = o | (3)
: 2n-2 if k<j ,

oed

For the complete solution of (1).wé still need n divisions which
can also be carried out in'parallel.'

Using the above deterministic values for the task proceséing
times, an optimal schedule is developed in [9] requiring n/2 pro-
cessors. A similar ﬁarallél implementation‘applied to other 11{-
near system’solvingbalgorithms results to computation graphs of
the same general structure. In all these cases, an optimal sche-
dule on 0(n) processofs is.obtéined, thus exhibiting an advantage
over previously developed methods which required a muéh larger

number of processors [9].

3. General framework

Let us consider the execution of the task gra?h of Fig.1l on an
“asynchronous multiprocessor systém‘of the MIMD type. We shall assu-
me that processors communicate through sharedimemory and that the
communication cost for cooperating tasks is not a dominant factor
in the algorithm's execution. .

The task graph is made of n horizontal levels defined as follows
level k includes ;he tasks T%—l’ j=k,k+1,...,n plus the task Ti (Fig.1
Clearly level 1 includésbonly'Ti.

The processihg times of all tasks Ti, 1<k<j<n, are independent
ideﬁtically distributed random variables following an exponential
distribution with parameter A: On the other hand, the procéssing
time of tésk Tﬁ (1<k<n), is an exponentially distributed random va-
riable with parametef My whete these random variabies are mutually
indepehdent. We shall aésume that the mean processing times of the
tasks are‘given by fﬁé expreésions (3) obtained in the previous.
Section under deterministic assumptiogs,éoncerning the execution

times of arithmetic operations. Thus:

1/u = 2n-k

(4)
1/A =2n-2

The above probabilistic assumptions express the fact that, although
a task requires in general a constant amount of serﬁice, its proces-
sing time depends upon the current state of the system due to over-
head associatedkwith resource sharing.

We are given a set of m proéessors, with m<n. Since the maxi-
mal parallelism of the computation graph is n-1 (Fig.1) we will re-
fer to the case m=n-1 as the case of infinite available processors.
Tasks are executed following the precedence relations represented

by the structure of the computation graph. We shall consider two

different parallel execution échemes depending on the synchroniza;

tion policy adopted:

1. Lével-byFIevel policy. The tasks of a given level k are executed
invparallel by the available processors. If some processor termi;
nates the processing of a task and there still exists a task of
the same level with no processor assigned to it, then the free
processor is reassigned to one such task. At the bégining of the
proéessing of level k there is always a processor assigned to
.task Tt_l; also, since the tasks Ti-l and Ti must be executed
sequentially, we assume that the some processor is éssigned to

~both of them. Processors are synchronized at the end of execu-
fion of each level, that is, nn task of levei k+1 nay be executed
if.there are non-executed tnsks of level k, even if thene eﬁist
free processors. .

2. Anticipatory policy. At any instant of the algorithm processing
no processor remains unassigned as long as there exigts a task
réady’for execution with no processor assigned to it. A task is
ready when éll precédence constraints regarding it are&S&ﬁfsfied,
The assumptions introduced for the first policy concerning the

i-l and T§ hold for this policy too. When a processor

terminates the processing of a task and there exist more than

tasks T

one ready tasks, then a task is chosen among those of minimum
level (lowest-level-first policy). |
The above Synchronization policies are introduced in [8], where
tree-structured programg are studied, and are referred to as non-

anticipatory and anticipatory respectively.

4. Modeling of the level-by-level policy

We are interested in evaluating the mean processing time of the

computation graph under the assumptions of the previous section. We

supnose that the m parallel processors are executing an infinity of
such graphs, in'the sense that as soon as the processing of task Tg,
of a graph is terminated, then the precessing'of task T} of another
graph 1is immedietely assumed (we will consider here that the time

required to perform the n divisions at the end of the graph'sexecu-
tion is negligible). The system's behaviour can be described by a

finite state-space Markov piocess'whose states are defined as follows:

- The system is in state (1',0) when the task Ti is being exectuted.

- The system ts in state (k, 2) 2<ksn, 0<f%<n-k, when tha task Ti_l
is being executed and there are i non-executed tasks (including
the ones being executed) among Tk 1° k+1<3<n

- The system is in state (k',) 2<k<n,'0<£<n -k, when the task Ti is

| being executed and there are & non-executed tasks (including the
ones being executed) among Tiul’ k+1<j<n.

- The system is in state (k';i) nggn—l, 1<2<n-k, when the execution
of task Ti is terminated and there are % non-executed tasks (in-
cluding the ones being executed) among fi 1’ k+1<j<n.

;Synchronlzatlon at the end of executlon of level k corresponds;to

‘ex1t from one of the states (k' 0) or (k',1).

The process is a finite state-space irreducible Markov process,

so there exists a steady-state distribution that we will denote by m.

Let us define the following parameters for each level k:

‘ak==min(m—1,n—k)
(5)
bk==min(m,n—k)

which correspond to the number of available processors for the execu-

tion of tasks Ti—l’ k+1<j<n, depending on the fact that one of the

‘tasks Ti 1 and Ti is being executed or not respectively.

The steady state probabilities must satisfy the follow1ng sy-

stem of linear equations:

=y n (6)

17 00" PaT (', 0)

(DA oy ™ 1T -1y, 0) M (k-1 1) S

(ap+ DA ()= AT (3 9u1) o s gpshen-k-1 2<k<n (7)
(AR)= (DA oy o 05£_<_ak_~1 |

- ‘ : : y
(Hk*'ak}\)ﬂ(k.,n_k)=An(k,n_k) S (. | N
(“k+akk)n(k',z)=Aﬂ(k,g)+akkn(kf,£&1) s §k§$§n~k-1 } 2<k<n (8)
(uk+zk)n(k',i)=A@(k,z)+(2+l)An(kf,z+l) , nggak-l

.) J

e)
b }\H(kn l)—uk (k' 2) +bk)\#(k"g 2+1) ’ ’ bk__<_,9.«_<_n"‘k‘1 \ 2_<_k_<_n-1 (9)
BT e S R

/
as well as the normaliziﬁg‘condition that steady-state probabilities
for all states must sum to 1. |

From the solution of the above linear system we can readily ob-
tain the mean parallel proces;ing time of the graph TD.' In fact,
Tp'is given by the mean recurrence time of state (1303; since. the
process visits thisstate once for every graph execution. Hence:

Tp = (a1 = | . a0

1 ’ , L ; :
In order to derive the speed-up due to the parallel procéssing we
need the mean sequential processing time'Ts of the algorithm, which
can be obtained by summing thé mean processing times of all tasks:
1

ERACE R oo

Ts k

So the speed-up and the efficiency of the parallel scheme can be

expressed as:

S, TT/T, | - (12)

Ef=Sp,’m | . | ‘ (13)
We have plotted in Figure 2 and 3 some numerical results il-

lustrating the behaviour of the parallel system. The curves of

Fig.2 represent the speed-up and the efficiency‘obtained for a pro-
blem of fixed size as a function of the number of available proces-
'sors. The same quantities are shown in Fig.3 as a function of the
problem size for seleéted values of the number of available pro;
cessors. We first notice that the spéed gain grows alhost linearly
~as the size of the problém increases but is limited with respect

to the number of processors used. This iskdue, on one hand, to

the fact that the maximal'parallelism of the algorithm is inherently
vllmlted and, on the other hand to synchronlzatlon delays which are
partlcularly effectlve under the level-by-level synchronization
policy. Another important remark is that the speed-up‘is almost
stabilized for m>n/2, whichA§alidates the optimal scheduling deve-

loped in [9] using n/2 processors.

18t \ ' ; JEI .
16 | \ ’ R |

14-‘_ \E T 9

12

L]

2 4 6 8 10

12

Figure 2 |

14

16 18

20

10.5

m

1000}
500¢

300t
2004

100}
50}

20}

1.0

T 23 5 10 20 30 50 100 200300 500 1000 n.

Figure 3

5. Modeling.of the anticipatory policy

-As in the previous Section we want to evaluate the mean proces-
sing time of the computation graph under the assumptions of Section
3. .Unfortunateiy, in the case of the anticipetery policy, a comple-
te state description isuimpossible to,handle.due.to.the size of the
state-space. Even in the limiting casee7of two or infinitely many
processors the model does not have anjanalytically tractable solu-
" tion. So, we are going to develop a heuristic approach for the in-
finite number of processors case, based upon the principle of pro-
cess decoupllng by using:a "markovian’ approx1mat10n" [31- Accordingm;_

to thls method we express the 1nte;act10n between concurrent proces-
ses through coupling parametere. These parameters are evaluated by
separately solving parts of thewhole problem and taking into account
~only the first order effects of coupling between processes. The resuits

obtained using this approach will be validated by simulation results.

" Our heuristic method 1sbased1qxn1the following considerations:

- The Darallel executlon of the computatlon graph (Fig.1l) using an

' infinite number of processors can be viewed as the execution of
‘n-1 COncurrentrproceéses. Thefi;sfw;f'these processes, which wille
"‘be referred to as fhe "main'' process, concerns the execution of
the tasks Ti,Ti,T%,TS ...,Tﬁ_l,Tg. In fact, these tasks consti-
tute the longest path of.the graph and the time required for the
execution of this path determines the processing time of the al-
gorithm. Besides the ﬁain process, we consider the n-2 processes
concerning the diagonal paths of the graph_{Tz, 1<i<j-2} for 3<j<n.

" These processes will be called '"secondary'" processes, and will be
.numbered from 2»to n-1.

- The secondary processes do not directly interect with each otﬁer,
but each one of them interacts with the main process. In fact; a

secondary process k can be blocked at level i (2<i<k) due to wait-

ing for completion of the task T;. On the other hand the main

Level

. Level
-
& /-
Main :
T2 p .)
2 T0CESS | | : /-
£ | ,
A 2) ‘ /
‘ /
l’fzv vz
- S

~

: ‘ /, Secondary
£ ' ‘ Process k

process can proceed to level k+1, only if the execution of seconda-
TY proéess k has terminated.

- In order to obtain the mean processing time of the graph, we are
going to consider the behaviour of the main prdcess taking into
account‘its interaction with each one of the sécondary prdcesses
studied sepérately. A secondary process k can produce delay to
the main process at the end 6# execution of level k. This delay

vwill be expressed by means of*a branching probability £y towards
a waitiﬁg state with mean residence'time‘l/vk (Fig.4). The coupling
‘parameters fk’vk cankbe obtained by solving a markovian model des-

~cribing the evolution of these two,proéesses independently of the
remaining secondar? processes. Since this model concerns the beha-
viour of the main process up to level k, it can be successively
solved for 2<k<n-1, each time yielding the corresponding coupling
parameters. It should be noticed, that the solution of the model
“for a particular value k takes into:acéount the effect of the ée-
condary processes i, 2<i<k-1 through the coupling parameters fi,vi
" that have already been determined.

We grbcéed now to the description’of the model concerniné the
interaction of the main.process with secondary process k (2<k<n-1).
For each value k the model represents the execution of a vart of the
main process, namely from level 2 to level k. ‘After succesively
solving the model for all values of k we can obtain thé mean proces-
sing time for the part of the gravh composed of levels 2 to n-1. The
contribution of levels 1 and n to the total mean processing time can
be added straightforwardly, since the execution of these levels cﬁn—
cerns only the main proceés.

We consider that the part oflthe graph corresponding to the se-
condary process k is executed infihitely many times. Our main sim-

plifying assumption is that the waiting states of the main process

‘at leveis i, 2<iz<k-1 are maikovian. ‘Their behaviour is characterized

by the parameters f.,v., which are known since they have élready been

computed while solving the model for the CCTresponding secondary ﬁrof

cess i. We .are led to a finite staie—space Markov process with sta-

 tes defined as follows tFig.4).

- The main process is in state i (resp. i'), 2<ic<k, when the task
Ti-l (resp. Ti) is being executed.

'

- Thevmain process is in state ;',‘Zjigk, when it is waiting for the
 correspohding,secondary process i to terminate execution.

- The secdndary process k is in State j, 25j5k, when the task,Tyfi

is being éxecuted. | | |

'

- The secondary process k is in state 3"y 2<j<k, when it is waiting
for completion of the task_Tg of the main process.

- According to the above definitions the possible states of the Mar-
kov proéess are: | |
(i,3),(1%3) ("3,

: 2<i<k
(i,i"), (i°,1" ~ ;
(i", i+1), (1", (i+1)"), Zgigk-l

- Exit from-one of the states (k'",k") or (k”,k) impiies the end of

 execution of/thek corresponding part of the graph. |
The Markov process is irreducible with finite state-space so

there exists a steady-state distribution, that will be denoted by =

and satisfies the following system of linear equations (2<k<n-1):

2AT (2, 2y MU e k) TR LK) .
. (14
Mz,2m™M(2,2)
2hm s oy= (-5 g 371y, 2)* Vi 1T (i-1)", 2) |
A = Oy 0y T im1y,) Y- 1R -0 5) P, -1 0 23R
' 2<i<k (15

R R L R DS M C R R PRI SE LS SE LI (SRR PN E RS DS

A ™Yo (G-1)7, i) AL 1)

g I (5)T (4, 2) e)

G”i*LJ“Ci'f)=*“(i,j)*A“(i;j-1) , 2<jsd 2<i<k (16)
£ TP, T MG)

(g KI5 2y ~E857 (3, 2) |

«Wﬁ*z")m‘(fi) =t (i, 3) M(i",j-T) y ‘2._<.J'_<_1

o 2 - 1)

({'w..-ﬁ'}k.),‘m((iu. .I""T) f u T[())\T[(on’i) } $1<k (7)
YT, (1Y) "’“‘(“",m) | o /
&n Pl Y 5“':!1- & VLIRS y N

k",2) "kT(K,2) (18)

M:‘(ﬂ‘{;"',,j:!)‘ =L}kn (k’, j) "‘)\.J't (k " , j - -])) 2 ’ 2< J_S_k

-

plus the marmalizing condition that the steady-state probabilities

must sﬁm,fo'l. |

From the solution of the above linearvsystem we obtain the coupling

parameters fk®vk as follows: q; |

- The branching probability f; can be derived as the asymptotic rela-
wtive'frequency'with\Which the main process visits the waiting state
k* during an execution of the corresponding part of the Job '
The mean departure rate from state k' (and hence the rate of visi-
ting this'state) is;An(ky’k)'since the main process leaves the
waiting state only through state (k'.,k).
On the other hand, the mean rate at which -execution is completed

~ is equal fo the departure rate from state (2,2), which is-ZAn(z’z);
since each execution includes exactly one visit to this

state. Hence, the desired quantity is:

fk4=‘;§%§L§% | o (19)

; R & i '

- The exit rate v, from tﬁe waiting state k" can be derived as the
departure rate from state k'’ given that the main process has entered
this state. The probability of the latter event is X “(k”,;)

Hence, we obtain:

Mg, x)

Yy T X (20)
RIS
Sﬁmmarizing,'our heﬁristig approéchcxulbe described as follows:

- For the values of k from..2.ito n-1 we successively solve the linear
system (14)-(18) and computé the corresponding parameters fk;vk
from (19), (20)‘respective1y. »l L ‘

- At each step the solution of the lineaf'system makes use of the
values of the parameters computed atlfhé previous steps.

- At the end of this procedure the mean parallel processing time of
the graph can be obtained as the mean processing time of the main
process: | o o
e) Vl+ n l;n.-l ‘ﬁ'(— . B | (21)

P A ox=1 Pxok=z Yk |

By using the value T, of the mean sequential processing time from (11)

we obtain for the speed-up and the efficiéncy of the parallel scheme:

S =Tg/T | | . (22)
p-Ts/Tp

Eg=5/(n-1) SR S

Iticanbe easily verified that the me thod providés for an easi- -
ly implemented, efficient compu;ation réquiring O(nz)qtime and O(h)
space. o | N

The accuracy of our markovian.approximation was validated by
simulation results obtained using the method of independent replica-
tions. More precisely, for each value of the problem size n consi-
dered, after a minimum of 30 replications, the'replication process
‘was carried on until a § percent relative precision was obtained
considering a 95 percent confidence intefval or until a maximum
of 1000 replications had been performed.‘ In all cases examined,
the values of the meaﬁ parallel processing time obtained from the
model exceeded the corresponding simulation estimates by less than

5 percent,

E

p Y
o Model ——
IOOQ [Simulation . ..
500}
200 } &
200 |
100} m=n-1
50 }
30}
20 |
16 |
St
3t
2t ,)/47
1 23 5 10 203050 100 200 300 500 1000 n
1.0 _ ;
~ Model SR
Simulation . . .
L m=n-1
o.sf
'\i?:ipatory .
: ~N .
~ : . s .
N .
~
Level-by-level T ——

1 23 S5 10 2030 50 100 200 300500 1000 n

;:Figure 5

‘Numefical results for the anticipatory policy are represented
by the bold line curves of Fig.5, which illustrate the variatidn»
of the speed-up and the efficiency as a function of the problem
size n. The correéponding-cprveé for the level-by-level poliéy
are plotted in dashed line for comparisoﬁvénd single points re-
"present simulation results. Again the speed-up varies almost
linearly with respect to n, whereas, as expected, the anticipa-

tory policy is clearly sﬁperiof to the level-by-level policy.

. 6. Conclusion

We have studied in thishpa;ér'the performance of a particu-
lar parallel pfocessing case; which is representative of a class
of parallel linear system solvers. A markovian model of the sy-
"stem was introduced considering twokdifferent synchronization
policies for the parallel execution of the algorithm. The mo-
del was ‘solved exactly in the first case for an arbitrary number
of processors, whereas a heuristic method was developed provi-
ding the solutlon 1n ‘the other ‘case for an infinite number of
processors. The eff1C1ency of our heurlstlc method was vali-
dated by simulation results. Numerical results obtained from
the model illustrate the speed-up and the éfficiency of the pa-
rallel computation scheme. The speed-up is important but is
far from beéing ideal, because of the limited intrinsic paral-
lelism of the algorithm and the effects of synchronization.

Our experience has shown that analytical methods based upon
the theory of stochastic processes may be very useful in the per-
formance evaluation of parallel processing. Furthérmore, our
heuristic decoupling approach, which provided quite good re-
sults, is an interesting alternative in the study of complex

distributed systems.

References

(1]

[2]

D. Heller, "A Survey of Parallel Algorithms in Numerical Li-

‘near Algebra", SIAM Rev.20 (1978)

D.J.Evans, M. Hatzopoulos, ”A Parallel Llnear System Solver"

'; Intern. J. Comput. Math. 7 (1979).

[3]

(5]

[6]

7]

1¢]

[¢]

B.Plateau, A.Staphylopatis, '"Modeling of the Parallel Reso-

lution of a Numerical Problem on a Locally Distributed Com-

. puting System', ACM SIGMETRICS Conference on Measurement

aqd Modeling of Computer Systems, Seatfle, WA, Aug. 1982;
P.Heidelberger, K S.Trivedi, "Queueing Network Models for
Parallel Processing with Asynchronous Tasks", IEEE Trane.
on Computers, Vol. C-31, No.11, Nov. 1982. |
E.Gelenbe, A.Lichnewsky, A.Staphylopatis, "Experience with
the Parallel Solution of Partial Differential Equations on
a Distributed Computing System", IEEE Trans. on Computers,
Vol. C-31, No.12, Dec. 1982. | |

G.Fayolle, P.J.B.King, I.Mitrani, "On the Execution of Bro-
grams by Many,Processors",ePERFORMANCE '83; A.K.Agrawala
ans S.K.Tiipathi (editors), North-Holland, 1983,

L.M.Adams, T.W.Crockett, "Modeling Algorithm Execution Time
on Processor Arrays', IEEE Computer, July 1984.

Ph.Mussi, Ph.Nain, '"Evaluation of Parallel Execution of Pro-

gram Tree Structures'", ACM SIGMETRICS Conference on Measu-

rement and Modelihg of Computer Systems, Cambridge, Mass.,
Aug. 1984,

M.Hatzopoulos, N.M.Missirlis, "Ad?entages for Solving Linear
Syétems in an Asynchronous'Epvironment", Joufnal of Computa-

tional and Applied Math. 12 & 13, 1985.

