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Abstract

Resource allocation aspects are considered in
cases of random contention for M identical resources
from K statistically different customer types. In par-
ticular attention is focused on data, voice and video
traffic within the ISDN framework. The feateures of
this application vary significantly form the assumption
taken in the literature when examining resource alloca-
tion schemes in a similar framework.

The general problem is to determine the optimal
policy for accepting or rejecting a call when the type
of the requesting customer is known as well as the sta-
te vector, with components the numbers of customers of
each type that are in service.

The objective of this study is to develop analytic
models and computational algorithms for the determina-
tion of the optimal state subset for slotted time sys-
tems with call traffic modeled as stationary independent
arrival processes and with deterministic service time.
The parameters optimized are the ones generally ac-
cepted, as throughput, utilization and blocking of the
system.

Introduction

Problems of buffer and bandwidth allocation among
several types of customers are considered in this paper
It is a usual situation in a computer communication net-
work that a limited number of resources are shared
among several communities of customers. Some exambles
of such situations are the following : a) A number of-:
customer types try to get access to a host. There is
an upper limit to the number of virtual circuits that
can terminate to the host at same instance, b) k types
of jobs are looking forward to be served by a Tlimited
number of proccessors in a multiprocessor machine or in
a computer network [2], c) several types of customers
contending to set up virtual circuits through a limited
bandwidth channel [8], d) in some cases a memory of 1i-
mited size is shared among some packet communities
within a computer communication network [1],[4],[5],[6}
Especially in an ISDN framework, communities of data,
voice and video packets share a common memory before
they get served by any server. :

Resently, many articles have appeared in the 1i-
terature considering such problems [1%,[7],[8]. Usually
the objective of such articles is to determine the opti-
mal policy for a specific system or to choose the bet-
ter policy among some of them, and to develop computa-
tional methods for doing such a thing. As a - policy
usually is ment the operation for accepting or reject-
ing a call when the type of requesting customer is known
as well as the system state characterized by the alloca-
tion policy. The state is a vector with components the
number of customers of each type that are in service.

In this article we consider discrete time systems.

A limited number of resources are shared among packet -
communities. We have developed an algorithm for the
determination of the system with best performance cha-
racteristics among some simple and usually appearing in
the literature policies. We have developed the model
for a discrete time system instead of continuous one as

- at the end of the slot.

usually appears in the literature. The arrival rates
are supposed to be geometrically distributed with dif-
ferent bit rates among different types of customers.

]

The mathematical model

Consider a server with a common waiting area with
a total accommodation of N storage places, Figure 1.
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Fig. 1. Server with common waiting room.

This buffer is shared between two types of customers.
Each customer from one type is going to be served with
a first-come first-served policy. The time required to
serve a customer from any type is constant. If we are
consentrating in a packet switching network, the con-
stant service time, comes from the constant packet
length, and last exactly a time slot. So in each time
slot only one job can be served. Also in each time slot
one customer of type 1 can arrive with probability Ay
or not arrive with probability (1-Aj). The same holds
for the customers of type 2. One arrives in atime slot
with probability A2 and doesn't arrive with probability
(1-A2§. This is a rational consideration and isn't made
for simplification of the problem. That comes from the
fact that the inputs to the considered system are out-
puts of similar systems, that can serve one customer in
each time slot. So if there are customers to that
other system they are served one each time slot and ar-
rive to our system. So the probability A1 under which
one customer arrives express the probability for any
customer to exist to that other system.

When a job of any type requests for service at
its arrival may be accepted or rejected according to -
the policy and the number of each customer type that
are already in the waiting room. We denote Qj(tn)=n
and Q2(tn)=np the number of each customer type that are
waiting for service of the beginning of the tn slot.
And that is what we call a policy now. A policy is the
decision to accept or reject a call when Qp(tn), Q2(tn)
is known as well as the identity of the requesting cus-
tomer. Also with no loss of generality we can assume
that the arrivals at each time slot take place exactly
At the beginning of each time
slot the server chooses by chance one of the waiting
customers and serves him during the slot. We can observe
that when the considered system is at a state, any one
type customer can be served and leave the system so
that we can understand that any policy must be a coordi-
nate convex set of admissible states as originally sta-
ted by Aeim [3]. ‘

Calculation of the state transition probabilities

Considering the state £n1,n2) lying in the inte-
rion of the state space in R¢, we have seven possible
transitions into it. These are depicted in Fig. 2 and



are

(i) Arrival of two customers, one of each type with
service completion of one customer from either type
(transitions from (ny,n2-1)).

(ii) Arrival of one customer of any type, with service
completion of a customer of the same type (transition
from (ny,nz)).

(i1i) Arrival of one customer of either type, with ser-
vice completion of a customer of the other type (transi-
tion from (ny-1, na+l) or (n1+1, np-1)).

(iv) No new arrivals, with service completion of a cus-
tomer from either type (transition from (ny, np+l) or
(n1+1, n2)).

(0,N)

(0,N-1)

(0,2)
(0,1)
(0,0)
(N-1,0) (N,0)
Fig. 2. State transition probabilitfes.

Extending the above to the k-types case in RK, we

find k.2K transitions into (nj,..,ny) originatig either

- fYom-the Same state 6v Trom 3fé§”%7* 3
of a hypecube around 1. More specifically we have :
k.k transition if a customer from any type arrives with
the completion of a customer from any type, or k.k! /
[m!(k-mg!] transitions if m customer from any type ar-
rive. So we have a total of :

k
k ¥ ki/(ml(k-m)l) = k2X transitions.
m=0

The general equation for the two customer types
case, that holds for every policy becomes :

Prin;,n,} = (nl/(n1+n2-1))Althr{nl,nz-l} +
(n2/(nl+n2-1))AIAZPr(nl-l,nz} +
(n1/(n1+n2))Al(I-AZ)Pr{n1n2}+((n2+1)/
(n1+n2))Al(l-AZ)Pr{nl-l,n2+1}+((n1+1)/
(n1+n2))(l-hl)AZPr{n1+l,n2-1}+(n2/
(n1+n2))(l-Al)AZPr{nl,n2}+(nl+1)/
(ng#ny#1)(1-A5) (1-A  )Prin +1,n, )+
((ny#1)/(ny+n,+1))(1-A)(1-7,) Pr
{ng,ny*1}

There are also some boundary equations that are

ing on the surface

common in every policy and they are :
Pr{0,0} = (l-Al)(1-A2)Pr{0,0}+(l-hl)(l-hz)
Pr{0,1}+(l-A1)(I-AZ)Pr{l,O}

Prio,n,}= (I-AI)AZPr{O,n2}+(l—Al)(l-Az)Pr{O,n2+l}
1
(1/ng# 1)) (1-h) (1A Prilung} o (1-hy)
AzPr{l,nz-l}

Pr{"l’O} = Al(l-AZ)Pr{nl,0}+(1/n1)A1(1-A2)
Pr{n1—1,1}+(1-A2)(1-A1)Pr(n1+1,0}+
(1/(n1+1))(I-Al)(l-hz)Pr{nl,l}

For each policy now we have special boundary equa-
tions. Since our policy is effective by reflected on
the remaining part of the boundary, we place special
emphasis on the system description there.

Thus, for the complete sharing policy we obtain :

If nytn, = N (this case holds also for limited complete
sharing policy)

Pr{nl,nz} = (nl/(n1+n2-D)A1A2Pr{n1,n2-1}+(n2/
(n1+n2-D)A1A2Pr{nl-1,n2)+(n1/(n1+n2))
)\1(l-AZ)Pr{nl,n2}+(n2/(n1+n2))(1-}\1))\2
Pring,n,3+((ny+1)/(n 4n5) A, (1-0,)
Pr{nl—l,n2+1}+((n1+1)/(n1+n2)(1-)\1))\2
Prin;+1,n,-1}

for ny =N, we have :

PriN,8} = Ar(I-AZ)Pr{N,0}+(l/nl)Al(l-Az)Pr{nl-l,H

- e N L e

and For n‘z“?”ﬁi"wg“mé“‘
Pr{0,N} = (1-A1)A2Pr(o,N}+(1/n2)(1-A1)A2Pr{Ln2-n

for complete partitioning and limited complete
sharing policies there are 4 common boundary equations.

PriN;,0} = Al{l-Az}Pr{NL,0}+(1/N1)A1(¥-A2)
Pr{N1-1,1}+(1/(N1+1))(1-A1)(1-A2)
PriN;,1}
Pr{O,Nz} = (l-hl)AZPr{O,N2}+(1/(N2+1))(l-hz)
(l—Al)Pr{l,N2}+{1/N2}(l—h1)A2Pr{1,N2-1}
Now when for complete partitioning policy ny=Np,
n2<N2 or for limited complete sharing policy n1=Njy ,
n2+n1<N, we have :

Prinj,ny} = (n1/(n1+n2-D)A1A2Pr{nl,n2-1}+(n2/
(n1+n2-1))A17\2Pr{n1—1,n2}+(n1/(n1+n2)))\1
(1-2,)Pring,n,}+((ny+1)/(ny+n,) JA(1-A)
Pring-1,n,411+(ny/(n +n) (1-A) A,
Pr{nl,n2}+((n2+1)/(n1+n2+1))(1-hl)
(1-A,)Pring ,ny+1}



When for complete partitioning policy ni<Ni,nz=Ng
or for limited complete sharing policy nz=No,nytno<N ,
we have :

Prin .ny} = (nl/(n1+n2-1))AIAZPr(nl,n2-1}+(n2/
(n1+n2-1))AIAZPr{nl-l,n2}+(n1/(n1+n2))
)\1(l-AZ)Pr{nl,n2}+(n2/,(n1+n2))(1-7\1))\2
Pr{nl,n2}+((n1+1)/(n1+n2))(1-)\1))\2
Pr{n1+l,n2-1{+((n1+1)/(n1+n2+1))(1—hl)
(I-AZ)Pr{n1+1,n2}

For Timited complete sharing policy there are two
more boundary equations.

For ny=Nys nytn,=N, we have

Pr{nl,nz} =\(nl/(n1+n2-1))Althr{nl,n2-1}+(n2/
(n1+n2—1))AIAZPr{nl-l,n2}+(n1/(n1+n2))
Al(1-7\2)Pr{n1,n2}+((n2+1)/(n1+n2)))\1
(1-A2)Pr{n1-1,n2+1}+(n2/(n1+n2))(I-Al)
APring,n,}

For n2=N2, n1+n2=N, we take

Pr{nl,nz} = (nl/(n1+n2-1))AIAZPr{nl,n2—1}+
(n2/(n1+n2-1))AIAZPr{nl—l,n2}+(n1/
(nl+n2))Al(l—Az)Pr{nl,n2}+(n2/(n1+n2))
(1-A A Pring sno3+((ny+1)/(n+n,))
(I-Al)thr{n1+1,n2-1}

The method
Let Py = [Ppgs---sPnjs---sPn,m]Ts where T means
transposed and m depends on the poTicy. From the con-
struction of general equation and independently of the
policy we are following, we can perceive that every Py
can be expressed as follows :

1 MPy

k= APr t BrorPre1tCe-2Pi-2 |

P
P

* BOPO

S0 that
‘ P

-1
1 (I'Al) Bopo, |

_ -1 i
Pe = (T-A) (B 1Py 1%y oPy2) !

;then we have

P, = D,.P,
P = 0P,
where
) -1
b, = (1-A)! B,
_ -1
Dy = (I-A)™" (B 1Dy _1+Cy oDy o)
where

Ak’Bk’ck’Dk are arrays with appropriate dimensions

From the construction of the state diagrﬁm Fig. 3
we perceive that writing down the equations for states

(0,0), (0,1)..., and independently from the policy we
are following, we can express P(1,0), P(1,1),..., in
other words Py as a function of Py, and we can find the
terms of the Ay and By arrays. A?so from equations for
states (1,0), zl,l),... we can express Py as a function
of Pj and Py, and also we can determine the terms for
Az, By, Cp arrays. So we can determine every Ay,By,Ck
array in other words every Dy and so that every Py,
writing down the transition equations for every sys-
tem's state exept the states that are the horizontal
projections of (0,0), (0,1),... (O,N) states, to the
boundary of the policy.

(0,4)
(0,7).

--- limited complete sharing

complete partitioning

' complete sharing
(1,0)(2,0)(2,0)(4,0)

|

- Fig. 3. State diagram for any policy

As a result we can express N probabilities of the
‘policy's boundary (these we mentioned earlier) as a
‘function of Py. Writing down the transition equations

for these N probabilities we take an equation system
with N equations and N unknowns. The Nth equation is
linearly dependent from the residual N-1 equations. So
that we substitude it with the normalization equation

) ; P,y =1
(i,3Jen
Where {} is the set of admisible states according to the

policy. So that we have a linear system with N equa-
tions and N unknowns which can be solved.

" "An_examble elucidating the method

Consider a buffer in a packet switching network
which can contain a maximum number of 4 packets. Suppo-
se that the assumptions we made in the mathematical mo-

“del paragraph holds in hear, with A;=0,3 and A2=0,2.

: For complete sharing policy we have the transi-
i tion diagram as in Fig. 4.

(0,4)m e !

i
v E

4

i v
(0,0)x
(4,0)

{Fig. 4. Transition state diagram for complete sharing f
: policy.

According to the method we have :

_ T
po " [Poo’ Po1* Po2e P03’ Po4]

_ T
Pe = [Pogs =ees Pyyl
Py= D)P, where according to the method :

0o’



[ 0.785
-0.392
0.147

L -0.049

<
"

(=}

©

with
[ 1.26
D, = -1.596
L 1.186

T 2.324
3| -a.787

= [ 4,575

writing the equition

(i,3)60
equation for states (O, 4), (1,3), (4,0), (3,1) we have

-1 0
3.571 -2
-1.339  5.357
0.446 -1.785
-3.57 1
10.427 -10.714
-8.482  22.066
-9.083  5.356
29.129 -38.758

-21.087 18.478

) X Py

0 01

0 0

-3 0

7.142 -3 ]
0 01
3 0

-21.428 6 |
-1 01
21.422 -4
-7.138 1]

=1, and transition

4.456x+0.012¢-0.002u = 1
~0.002x+0.015¢-0.062z+0,250u-m = 0
-0.127x+0.991¢-3.1412+7.463u-4m = 0
3.764x=17.773¢+16.368z-6.71utm = 0
-4.644z+27.1730-35.7672+20,386uw-4m = 0

This equation system solved gives :
Po = [0.2242 0.0721 0.0296 0.0070 0.0005]T
and so that
= [0.1038 0.1103 0.0739 0.0168]T
= [0.0546 0.0978 0. 1605]T
= fo.0176 0.02761 -
4 = [0.0028] .

”"P

For Vimited complete sharing policy we have
(0.3) w
z
]

(0.0) x
(3.0)

Fig. 5. Transition state diagram for 11m1ted complete
sharing policy.

Py = DyPy
where
[ 0.785 1 0 0o ]
-0.392  3.571 -2 0
17 0,147 -1.339  5.3572 -3
[-0.049 0.446 -1.785 7.142 ]
P, = D,P, with

[ 1.26 -3.57 1 o ]
D, = -1.596 10.427 -10.714

[ 1.186 -8.482 22.066 -21.428 ]
. - [ 2.324 -9.083 -5.356 -1 ]

[ -4.784 29.129 -38.758 21.422 ]

Following some steps as before we find :

-0.119x+21.099p-18.4782z+7.1360 = 1
-0.127x+0.991¢-3.1412+7.463v =
2.562x~-11.815+10.353z-3.999%w = 0
~4.004x+24.221§-33.1802+19.387w = 0

This equation system solved gives :

= [0.2242 0.0723 0.0296 0.0067]T
so that

= [0.1036 0.1110 0.0746 0.0162]T

P, = [0.0539 0.0990 0.1622]"

Py = [0.0161 0.0297]",
For complete partitioning policy we have
Py = DkP0 with
[ 0.785 -1 0 ]
D1 = -0.392 3.571 -2
[ 0.147 -1.339 5.357 ]
AN
1N
1 \
' N\
(0. 2) z (2.2) )
P & e
. b AN
; \
; (0.0) x _——
; (2.0)
/Fig. 6. Transition state diagram for complete parti-;
! tioning policy. ;
§ [ 1.26 -3.57 1]
i D, = -1.596 10.427 -10.714
[ 1.008 -7.807 19.385 ]

Following the

2.212x+1.282¢
1.301x-~5.080¢
0.874x-6.687¢

‘ Solving this
i = [0.2796
so that

= [0.1363

= [0.0751

1
H
!
t

We are now in the position to calculate the per-

developed method we have :

+14.028z = 1
+2.993z = 0
+15.916z = 0

equation system we take

0.0831 0.0195]7

0.1481 0.0342]7
0.2113 0.0110]".
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N\

(0.3)

(0.2)
(0.1)

(0.0)

(0,3) (0,6)
Fig. 7. Bandwidth transition state diagram.

We can perceive from the special construction of
the state diagram that we can implement the developed
method and for this kind of problems. So we can find
every Py in terms of Py simply determining every Dg. As
a conclusion we can te?l that we developed a simple com-
putational method for the determination of the perfor- :
mance behaviour for every coordinate convex policy.



