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Abstract 
 
In this manuscript, we present a generic and simple method to model conservatively – with respect to 
queuing – videoconference traffic from VBR video encoders over IP Networks. The analysis of 
extensive data compressed by the encoders of the Videoconferencing Tool ViC: NV, NVDCT, H.261, 
H.263, H.263+, BVC and CELLB (which, to the best knowledge of these authors, haven’t been studied 
in their entirety) suggests that although the fit of the empirical distribution with the MOM method is 
not satisfactory, a careful choice of the autocorrelation coefficient using the ‘‘compound exponential 
fit’’ model used in [1] and the modulation of the simulated data with a random variable of a uniform 
distribution, as in [8], can lead to a steady generalization of the DAR model. Simulation results using 
the ns-2 simulator confirm our claims.  
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Introduction 
 

Videoconference traffic modelling has been extensively studied in literature and as 
a result a wide range of modelling methods can be found. Results of earlier studies as 
[2], [3], [9], [10], [12], concerning variable bit-rate video streams in ATM networks, 
indicate that the histogram of the vbr video frame sizes exhibits an asymmetric 
Gamma-like shape and that the autocorrelation function decays quickly 
(approximately exponentially) to zero. An important body of knowledge in vbr traffic 
modelling is the approach in [7] where the DAR [6] model is introduced. Several 
other models have been proposed for vbr video traffic modelling such as GBAR [4] 
and SCENIC model [5] which are generalized forms of DAR. The GBAR model 
could be a solution for traffic modelling of these encoders, as it was especially 
designed for videoconference. On the contrary, SCENIC is oriented to full motion 
video and not to a typical videoconference content.  

Newer studies of vbr video traffic modelling reinforce the general conclusions 
obtained by the above earlier studies by evaluating and extending the existing models 
and also proposing new methods for successful and accurate modelling. In [11], a 
‘stuffing’ method was used for grouping frames into variable frame periods. In this 
study, the use of movies (like Starwars), as visual content, led to frames generation 
with an approximate Gamma PDF (more complex when target rate was imposed) and 
ACF quickly decaying to zero. A final study is [8] where authors proposed a new 
generalized model called MMB-DAR that combines a marginal matching technique 
and a variable of uniform distribution. 
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The above methods certainly constitute a valuable body of knowledge. However, 
these methods haven’t been applied to the traffic generated by the entirety of the 
encoders used in the global videoconference market†. Many of the encoders supported 
by ViC like NV, BVC, CELLB are widely used by the academic community while 
others are used in palmtops thanks to their effective performance and cheap 
processing needs. Under these circumstances, this study proposes a generic and 
simple method for conservative modelling of videoconference traffic encoded by the 
reported existing videoconference coding methods. 

The rest of the paper is structured as follows: section 1 describes the characteristics 
of the experiments and presents some basic statistical information of the measured 
data. Section 2 contributes modelling results with the DAR model and discusses 
appropriate methods (per encoder) for – with respect to queuing – successful traffic 
modelling. The simulation results of section 3 confirm the accuracy and 
conservativeness of the proposed methods. Finally, section 4 culminates with 
conclusions and pointers to further research. 
 
1. Description of the Videoconference Experiments 
 

The study reported in this paper undertook measurements of the IP traffic generated 
by different VBR encoders. To do this, we used the videoconference software 
package ViC and measured the traffic generated by all the encoders currently 
supported by the program. These are: NV [17], NVDCT [17], H.261 [13], H.263 [13], 
H.263+ [13], BVC‡ and CELLB [15]. The JPEG encoder was not examined as it 
produces very high Video Bit Rate. This is due to the fact that in its coding algorithm, 
the entire frames are coded via the JPEG still image standard (does not utilize a block-
based conditional replenishment algorithm). The PVH encoder was not studied as it 
utilizes a video compression algorithm that produces multiple layers in a 
progressively refinable format and tolerates packet loss [19]. The RAW standard 
produces uncompressed data and as a result is out of interest in the current study.  

Our experiments methodology is the following: importing a created content (a 
person speaking with mild movement and no abrupt scene changes) through a video 
camera input, we configured ViC to transmit the encoded data to the IP number of a 
Network Sniffer (a pc running the Ethereal program). The duration of each 
experiment was 1 hour and from the ViC menu the Video Bit Rate was configured at 
320 Kbps and the Video Frame Rate at 15 fps (parameters required for a qualitative 
talking heads communication). For comparison reasons, the same content was 
inputted in all the experiments. In each case, the UDP packets were captured by the 
traffic monitoring software. The collected data were further post-processed at the 
frame level by tracing a common packet timestamp. The produced frame size (bytes) 
sequences were used for further analysis. 

Some first conclusions, as supported by the experiments’ results (see Table 1), arise 
concerning the statistical trends of each encoder’s traffic. First of all, we observe that 
the encoders tend to reach the video frame rate threshold specified in the experiment’s 
scenario (except H.263+). Moreover, NVDCT produces lower Video Bit Rate than 
NV does. This is also observed at the h.26x series. Specifically, h.263+ produces 
lower Video Bit Rate than h.263 and h.261 do. This was expected, since the earlier 
encoder versions have improved compression algorithms than the prior ones. Finally, 
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despite the fact that the h.261 (Intra-h.261) and NV encoders are both transform 
coders and are in fact quite similar, the former produces lower Video Bit Rate because 
it uses a discrete cosine transform (DCT) instead of a Haar transform; it uses a linear 
quantizer instead of dead-zone only quantizer; and it applies Huffman coding to the 
run-length encoded symbols (for more information see [13], [15], [16], [17], [18]). 
 
2. Statistical Analysis of the Video Traffic and Presentation of the Simulation 
Method 

 
Analysis of the traffic, for all experiments, confirms the general body of knowledge 

that literature has formed concerning videoconference traffic. In brief, the sequence of 
the frame sizes can be represented as a stationary stochastic process, with an 
AutoCorrelation Function (ACF) quickly decaying to zero and a marginal frame-size 
distribution of approximately Gamma form. 

The above context makes the DAR model directly applicable for full modelling and 
analytic treatment of the traffic. This model produces a sequence of frame sizes 
according to the transitions of a discrete time Markov Chain, of the form: 
 

Ι (1 )P Qρ ρ= + −                                                                                                           (1) 
 

where ρ is the autocorrelation coefficient at lag-1, Q is a rank-one stochastic matrix 
with all rows equal to the probabilities resulting from the negative binomial density 
corresponding to the Gamma fit for the frame size distribution and I is the identity 
matrix (with the same dimension as Q). 

After extensive analysis of the empirical data with different generalizations of the 
DAR model in literature and extensive simulations tests using the ns-2 simulator, we 
concluded to a generic and simple proposal for conservative simulation of the 
videoconference traffic for each encoder. Our proposal includes the following 
modelling and simulation steps (for each step we reason our claims): 
 
1. To fit the empirical frame sizes distribution use the MOM method. Why? 
 
• It is simple. All you need is the mean frame size and the variance of the frame 

sizes sequence given by table 1, and not the entire sequence (only a small part of 
the sequence is enough as the sequence is stationary). 

• It captures accurately the mean video bit rate of the actual data. 
• It tends to capture the tail of the frame sizes distribution (that corresponds to the 

peak rates of the traffic). 
In actuality, all density distributions seem to fit a gamma-like shape with a very 

heavy tail and asymmetry (see figure 1). According to the method of moments when 
the mean, m, and the variance, v, of the data sample are known, this method produces 

estimates for the shape and scale parameters of the Gamma distribution: 
2m

p
v

=  

and v

m
µ =  (Numerical values of p and µ parameters of all encoders appear in Table 2).  

Although the MOM method did not provide a satisfactory fit in most cases (see 
figure 1), it can still capture the mean video bit rate (what matters in queuing).  
 



2. Choose the correlation coefficient not at lag-1 by taking into account the long-term 
trend of the ACF. 
 

Taking into account that the long-term decay rate is the most important factor for 
queuing, it is evident that a proper model for fitting the autocorrelation function of 
videoconference traffic is the Compound Exponential Fit (CEF) proposed in [1]. This 
method is a weighted sum of two geometric terms: 

 
ρκ = wλ1

κ + (1-w)λ2
κ, with |λ2| < |λ1| < 1                                                                      (2) 

 
This method was tested with a least squares fit to the autocorrelation samples for 

the first 1000 lags§ for each encoder. Numerical values for the results appear in Table 
2, while the graphs of the fitted models are compared to the sample ACFs in figure 2. 

What matters in (2) is the autocorrelation coefficient λ1 as it tends to capture the 
long-term behavior of the autocorrelation function. The retention of this model is 
further verified by previous studies [1], [7] for videoconference traffic where values 
of λ1 were found to be near 0.998. This being the case, further study towards new 
models is of no point. 
 
3. Create a 30-state Markov Chain from (1) (using the data set of Table 1 and 2) and 
assure to modulate the simulated data by a random variable of uniform distribution. 
 

Extensive simulation tests showed that a 30-state markov chain can simulate 
steadily the actual data. 

The 30 states can be easily chosen by dividing the interval between the maximum 
and the minimum frame size into 30 frame sizes states. So, if xmin is the min frame 
size and xmax the max frame size from Table 1 then the step s of the states should be   
s =integer[(xmax - xmin)/30].  

To make the simulated data more realistic, the introduction of a random variable Yn 
of a uniform distribution in the interval of [-s/2, s/2] is a direct solution (similarly 
used in [14] but without any suggestion on the selection of the interval). 

 
4. Initialize your Markov Chain with the mean state (which is 15 in our case). 
 

This is a realistic initialization choice as the first frame of the encoder is more 
probable to be in the mean. 
 
3. Validation of the Simulation Results with ns-2 
 

In this section, we apply trace-driven simulation tests with ns-2 to validate the 
simulation method proposed in the previous section.  

Consider we have a typical M/D/1 queuing system with an incoming vbr source 
with mean video bit rate equal to C Kbits/sec (containing the actual data or the 
simulated data), a queue with infinite buffer B (Bytes) and a server with capacity 
D=1.1*C Kbits/sec (10% higher than the client).  

Deploying the above trace-driven simulation system in ns-2, we monitor the queue 
buffer size every 0.1 sec. The complementary distribution of the monitored buffer 
frame sizes gives buffer overflow estimation. The comparison of the distribution 
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given by the sample data and the simulated data is used for validation of the 
simulation model. 

After extensive simulations, we concluded that the proposed model is steady and 
provides conservative estimations in all cases. However, a careful choice of the 
correlation coefficient is needed to assure that the model will remain conservative in 
future cases of burstier sources. A fit of the autocorrelation function at 1000 lags lead 
to conservative results for all the encoders. Most ρ values are near 0.98 besides the 
case of H.263+ (equal to 0.83). 

As depicted in figure 3, the buffer overflow estimation given by the simulated data 
with the DAR model (always with the value of ρ being equal to the correspondent 
value of Table 2) is more conservative than the actual data estimation. The 
conservativeness of our method assures the applicability of the simulation method in 
cases of lower or higher motion videoconference contents. 
 
4. Conclusions 
 

The current study is a contribution of modelling and simulation results for a variety 
of existing videoconference encoders for talking heads communication. After 
extensive analysis and simulation tests, we concluded that a careful but simple 
generalization of the DAR model can simulate steadily and accurately the measured 
videoconference data. Finally, Tables 1 and 2 constitute a valuable data set for 
administrators of computer networks interested in queuing studies on 
videoconferencing applications. 

Future work includes: validation of our model with different videoconference 
contents (low motion and high motion), study of different statistical models for fitting 
the empirical distribution (besides the MOM method) and the realization of our model 
using the Continuous version of the DAR model, namely, C-DAR model (proposed in 
[14]). 
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Table 1. Some first statistical characteristics of the generated frame sequences  
(at 320 KBits/sec and 15 frames/sec) 

 
Encoder NV NVDCT H261 H263 H263+ CELLB BVC 

Experiment 
Duration (sec) 3600 

# of Frames 50113 53336 53937 53453 17921 53749 53855 
Mean Video 

Bit Rate 
(Kbits/Sec) 

182 121 63 54 13 93 92 

Mean Frame 
Rate 14 15 15 15 5 15 15 

Mean Frame 
Size (Bytes) 1638 1023 527 457 331 779 766 

Variance 
(bytes2) 1589100 678870 174130 24588 401060 407130 467460 

Min Frame 
Size (bytes) 24 24 78 196 80 77 40 

Max Frame 
Size (bytes) 10284 6468 2718 2122 5343 5959 4658 

 
 

Table 2.  MOM and CEF parameters per encoder 
 

 NV NVDCT H261 H263 H263+ CELLB BVC 

Parameters of the MOM model 

p 1,68902 1,54127 1,59437 8,50609 0,27242 1,49142 1,25564 

µ 969,96887 663,67191 330,47803 53,76463 1213,3365 522,47651 610,1546 

Autocorrelation Coefficient λ1 = ρ derived from the CEF model 

λ1 0,9984 0,99815 0,9987 0,9959 0,83 0,9983 0,9985 
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Figure 1. Frame size empirical distributions (smoothed with a typical ‘‘box’’ method) and MOM fits 

per encoder 
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Figure 2. Autocorrelation Graphs and fitted model per encoder 
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Figure 3.  Complementary Distributions of Queue Buffer Size – Overflow Estimation 

 




