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Abstract 
The paper contributes results on the modeling of videoconferencing traffic over IP networks. The 
study is based on extensive data, gathered by tracing the actual packet exchange during a 
comprehensive set of realistic teleconferencing sessions over an asymmetric platform, in which 
commercial H.261-compliant terminal clients were communicating through a Multipoint Control 
Unit (MCU) at ‘continuous presence’ mode. Analysis of the data suggests that the video traffic 
from the client terminals can always be represented at the frame level as a stationary stochastic 
process with an autocorrelation function of exponentially fast decay and a marginal frame size 
distribution of approximately Gamma form. The video traffic from the MCU to the clients is 
again stationary and with exponentially decaying correlations, while the corresponding marginal 
frame-size PDF has the form of an appropriately weighted sum of Gamma components, the 
number of terms in the sum always being equal to the number of conferring terminals. The paper 
discusses methods for correctly matching the parameters of the modeling components to the data 
and for combining these components into complete traffic models that have been proposed in the 
literature. 

Keywords: Videoconference systems, video bridging, multipoint control units (MCU), H.261 
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1. Introduction 

Videoconference is an increasingly popular network-based service. Its success is a result of 

reduced costs, continuous quality improvements and tailor made communication standards. 

Since videoconferencing relies on the exchange of bandwidth demanding video information, 

extensive deployment of this service calls for careful modeling of the associated network 

traffic, so that the appropriate amount of resources may be anticipated for by the network. 

Furthermore, and from a complimentary viewpoint, successful traffic modeling can provide 

valuable insights about the resulting network load, and these may be used towards an efficient 
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and more economical network usage, ultimately leading to lower communication costs and a 

more affordable service to the end-users. 

Partly due to the reasons just mentioned, the problem of modeling video traffic, in general, 

and the video component of teleconferencing, in particular, has been extensively studied in 

the literature. A major surge of interest in the topic appeared with the advent of ATM, which 

offers the potential for efficient multiplexing of variable-bit-rate video streams. Relevant early 

studies [4,18,28,32] examined various characteristics of VBR video traffic, such as 

differences in successive frame sizes and cluster lengths [4], scene duration 

distributions [28,32], bit rate variations among scenes [32], and packet generation intervals (at 

various levels of video activity) [18]. Results from these and other works indicate that the 

histogram of frame sizes (often used as a proxy for the instantaneous bit-rate requirements) 

exhibits a (somewhat non-symmetric) bell-shape [15,18,28,21,22]. Furthermore, correlations 

in the video bit rate (again, usually assessed at the frame level) are found to decay 

exponentially [5,13,15,20,21], while other studies [22,23,24,25,26] observe a more complex 

phenomenon, in which the correlation decay is rapid for the initial lags, then continues at a 

lower rate. 

The characteristics just mentioned provided a basis for the modeling of video traffic through 

relatively simple means, such as autoregressive (AR) models of various orders or Markov 

Chain (MC) based models. For the modeling of ‘viewphone’-type video, reference [21] 

employs an AR(1) process with Gaussian residuals, which matches well to the bell-shaped 

density and exponential autocorrelations of the bit rate. The same modeling approach (again 

for teleconference-type video, coded according to various generic coding schemes) has been 

followed by [22], while [30] employs an AR(1) sequence with Gamma-distributed variables, 

in order to cope with the asymmetry in the rates histogram. As an alternative to AR-based 

models, [21] employs a MC-based approach, which corresponds to the homogeneous 
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superposition of a number of fictitious on/off Markovian sources, is more amenable to 

analytic treatment, and maintains the key features of exponentially decaying autocorrelations 

and bell-shaped density (actually binomial) for the bit rate. An extension of this MC model 

that can capture multiple video activity levels and scene changes (more frequent in TV-type 

content than teleconferencing) has been proposed as well [25]. 

Other works, in an attempt to track more closely the complexities observed in the 

autocorrelation decay, employ more elaborate means, such as autoregressive moving average 

(ARMA) models [12], Gaussian AR(1) models (sometimes more than one, in combination) 

with parameters modulated according to the transitions of  a MC [23,26,33], Markov Renewal 

processes with sojourns fit to compound geometric distributions [20], or Markov Modulated 

Rate Processes (MMRP) with parameters fitted to the rates histogram [27]. From a different 

point of view, [7] promotes performance studies relating to video traffic on the basis of 

‘glitch’ statistics, while [24] makes use of generic, coding independent, indices, as a means to 

characterize video traffic in general terms, not affected by coding idiosyncrasies. 

Of particular relevance to our work is the approach in [15], where observations on a rather 

long sequence of frames from teleconferencing video provide evidence that the density of 

frame sizes has a Gamma shape (a fact that had also been noted by [18] and was subsequently 

employed in [30]) and that AR models of at least order two are required (and are sufficient) 

for a satisfactory match with the statistical characteristics of the sample. However, the same 

study observed that the AR(2) model cannot capture accurately the queueing performance of 

video, while a simple DAR(1) model, based on a discrete-time, discrete-state MC (with 

parameters matched to the frames size distribution and the exponential autocorrelation decay 

rate), is very well suited to this task. This modeling approach has been found appropriate for 

describing teleconferencing video coded by a variant of the H.261 standard [16] (being 

directly into the present paper’s scope) and has been successfully employed in simulation-
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based [5] and analytic/asymptotic [8] performance studies. A continuous-time variant of the 

DAR(1) model has been proposed [31], aiming at a model suitable for analytic queueing 

studies. In another direction, a four-parameter non-Markovian extension of DAR(1) has been 

used for capturing scene changes in television-type video content [11]; the study reports that 

in the absence of abrupt scene changes (as in typical teleconferencing) the results of the 

extension are in accordance with the simpler Markovian framework [15]. 

All the models reviewed up to now are short-range dependent, exhibiting rate correlations that 

decay at an exponential rate. Although there have been claims that video traffic possesses 

properties reminiscent of long-range dependence [1], teleconferencing video has been found 

to be only asymptotically self-similar [9], at a time-scale not affecting queueing. A study 

specifically focused on this issue [14] reports that indeed long range dependence does not 

affect the accuracy of queueing performance, as predicted by the DAR(1) model in [15], for 

all busy period lengths actually observed in practice. 

The research results outlined in the previous paragraphs certainly constitute a valuable body 

of knowledge. However, many of these studies were undertaken at a time when the 

videoconference practice was still in early stages. As a consequence, many instances of traffic 

data that have been used for producing and/or validating results in earlier investigations relate 

to short video traces only a few seconds long (as in, e.g., [7,12,20,21,22]). Even when 

appropriately long traces exist, they are sometimes coded in nonstandard or simplified 

variants of standard coding schemes. For example, the long teleconferencing video trace 

of [15] has been employed for the validation of the DAR(1) model for H.261 video [16] 

through a open-loop (no rate control) coding variant  that uses a fixed quantizer step. 

Today, a large number of actual videoconference platforms exist, the majority of them 

operating over IP-based networking infrastructures and using practical implementations of the 

H.261 standard [3] for video coding, and it is important to know whether the models 
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established in the literature are appropriate for handling this contemporary setting in general. 

Furthermore, asymmetric teleconferencing platforms have been introduced, employing 

centralized management through multipoint control units (MCUs) [2,19],1 with the aim of 

providing higher quality and better control over the sessions. When operating in the so-called 

‘continuous presence’ mode, the MCU combines input from several client-terminals and 

sends the output back to these terminals. It is important to know if the more complex MCU 

traffic stream can be modeled by the known methods and, if not, to propose suitable models 

for this case too. 

In addressing the context just stated, the research reported in this paper undertook extensive 

measurements of the IP traffic that was being generated during the course of actual 

videoconferencing sessions, hosted by a modern asymmetric platform that included client-

terminals coordinated through an MCU. The experiments covered various cases with differing 

number of terminals (always conferring in continuous presence mode), and different quality-

related MCU-parameters. The collected data were analyzed, providing results on the 

characterization of the video traffic originating both from the clients and the MCU. 

These results suggest that, in all cases, the traffic from the clients can be represented—at the 

frame level—as a stationary stochastic process with an autocorrelation function of 

exponentially fast decay. Although the autocorrelation cannot be directly fitted to a single 

exponential term, careful choice of the decay rate allows the construction of a conservative 

(but asymptotically tight) exponential approximation. Furthermore, the distribution of sizes 

for the client-originated frames can always be satisfactorily approximated by a PDF of 

Gamma form, although an unconventional fitting of the model parameters, based on the shape 

of the histogram, is seen to be more appropriate than the usual moments matching approach. 

                                                 
1 See also [29] for a comparison with other multimedia multiparty teleconference approaches. 
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These terminal-related findings, being the outcome of a comprehensive set of realistic 

experiments on an actual system using a practical implementation of H.261, can be seen as 

validation and reinforcement of earlier results ([5,13,15,20,21,22,23,24,25,26] for the 

autocorrelation, [15,16,18] for the rates distribution) and as additional justification for the 

modeling practices arising from them, in particular those based in the DAR(1) model 

[8,15,31]. 

The results for the traffic originating from the MCU (a topic not previously studied in the 

literature, to the best knowledge of the authors) are more complex, still however possessing a 

clearly identifiable structure. The traffic is again stationary and the autocorrelation function 

still exhibits exponentially fast decay and can be conservatively approximated by an 

appropriately chosen single exponential term. However, the distribution of the frame sizes is 

not conformant to a simple Gamma PDF. Instead, it is found that this distribution is closely 

approximated by a weighted sum of Gamma PDFs, the terms in this sum being always equal 

to the number of client-terminals in the corresponding videoconference session. The paper 

discusses methods for calculating the appropriate model parameters from the observed traffic 

data and proposes a simple adaptation of the DAR(1) model for usage with the MCU video 

traffic. 

The rest of the paper is structured as follows: Section 2 discusses the videoconferencing 

platform employed for experimentation, describes the characteristics of the experiments’ suite 

and outlines the procedures used for the measurement of data. Section 3 presents the results 

relating to the video traffic from the client terminals, and discusses methods for parameters 

matching and for usage of the resulting values in a traffic model. Along similar lines, 

Section 4 presents the results for the MCU traffic. Finally, Section 5 culminates with 

conclusions and pointers to further research. 
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2. The videoconference platform and experiment characteristics  

The paper focuses on multipoint videoconference, i.e., an environment where the client-

terminals communicate through a multipoint control unit (MCU) that coordinates the session. 

There are two main modes of operation: ‘switched presence’ [2] and ‘continuous 

presence’ [19]. In switched presence mode the MCU sends to all terminals the output from 

one participant, designated as “currently active”, determined so either by human selection, or 

by an automatic detection of activity on the respective audio channel. In continuous presence 

the MCU combines the signal from up to four terminals and sends the resulting output to all 

the participants, who, in this way, become able of continuously viewing each other. The 

H.261 standard [3] allows the direct combination of four QCIF videos into a CIF video, 

without the need for decoding to the pixel level followed by a re-encoding, thus allowing an 

efficient handling of the continuous presence mode by the MCU. It is noted that in continuous 

presence the terminals operate asymmetrically [19], sending to the MCU QCIF pictures at 

some rate R and receiving CIF pictures at rate 4R (actually iR, for i participating terminals). 

The experiments for the study reported herein were realized on a platform that consisted of 

standard personal computers running H.261-compliant commercial videoconferencing 

software (MS NetMeeting) and an MCU (a Cisco IP/VC 3510 unit), all networked over an IP-

based LAN. The platform’s topology is sketched in Fig. 1. Twelve different modes of 

videoconferencing, at various quality levels, were possible on this particular MCU; relevant 

characteristics of these modes are summarized in Table 1. Since the focus of the study was on 

continuous presence, Modes 3 and 4 (see Table 1) were used in the experiments, both 

employing a nominal frame rate of 15 frames/sec and corresponding to videoconferencing at 

high and low video bit rates, respectively. Two experiments were performed under Mode 3, 

one of them (referred to as ‘Case 1’ in the sequel) involving two conferring terminals, the 
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other (Case 2) involving four terminals. Another experiment (referred to as ‘Case 3’) 

employed Mode 4 with two terminals. 

All experiments traced corresponding videoconferencing sessions of realistic content 

(reminiscent of a tele-working environment) and of sufficiently long duration (from 30 min to 

2.5 hr, depending on the video bit rate used in each experiment). In each case, the IP packets 

exchanged in both directions between the terminals and the MCU were captured by traffic 

monitoring software. The collected data were further post-processed, in order to identify the 

packets carrying part of the same video frame (by tracing a common packet timestamp) and 

then calculate the sizes of individual successive frames. The final output of every experiment 

consisted of frame size sequences (their length ranging from about 18000 frames, to about 

30000 frames, depending on the experiment), each corresponding to the frame sequence 

produced by either a terminal, or by the MCU. These sequences were subsequently used for 

the analysis reported in Sections 3 and 4. 

Table 2 provides a synopsis of some experiments-related quantities. With reference to this 

table it may be observed that, in all cases, the bit rate from the MCU is a multiple of the 

terminals’ bit rate, the multiplication factor being equal to the number of terminals. This is in 

accordance with the mechanics of the continuous presence videoconference and has the effect 

of maintaining an approximately equal frame rate in both directions between the MCU and 

the terminals. It may also be observed that the values of the bit rate achieved are in all cases 

much lower than the respective maximum specifications of the corresponding MCU modes 

(compare Tables 1 and 2), reflecting the fact that the content of the videoconference did not 

exhibit dramatic scene changes, frequent zooms, or other such effects. 

Finally, it is noted that the columns of Table 2 for the 1st experiment (Case 1) include 

information for both conferring terminals and this information provides a rough evidence for 

the similarity of the respective traffic patterns. The issue is further elaborated upon in 
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Section 3. In general, close statistical proximity in the characteristics of all terminals within 

each session was observed throughout all experiments. For this reason, the information of 

Table 2 relating to the other experiments (Cases 2 and 3) refers to only one terminal for each 

case, as a representative of the video traffic from all terminals in the respective sessions. 

3. Analysis of the video traffic from the terminals 

Given the relevant published research on the topic, the following questions arose naturally 

(and their answer was pursued) during data analysis: 

 Can the traffic be reasonably considered stationary? 

 What is the form of the autocorrelation function? Is the associated decay exponentially 

fast? Is a steady decay rate maintained throughout, or does it vary in different lag-ranges? 

 What is the form of the frame-size histogram? Can it be reasonably approximated by a 

Gamma (or normal, for non-pronounced asymmetry) density? 

 Are the answers to the previous questions invariant among the terminals participating in 

the same videoconference scenario? More generally, are the general properties (not 

parameter values) characterizing the answers to the previous questions invariant among 

the traffic from terminals participating in different videoconference scenarios (i.e., 

different MCU modes)? 

In brief, the answers to these questions, as supported by consistent evidence from the 

experiments’ results (to be discussed in detail shortly), are as follows: the sequence of frame-

sizes from a client terminal can be represented as a stationary stochastic process, with an 

autocorrelation function of exponentially fast decay (and finer properties to be commented 

upon later) and a marginal frame-size distribution of approximately Gamma form. These 

characteristics remain invariant for all MCU modes employed in the videoconference 
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experiments. Moreover, for the terminals participating in the same videoconferencing session 

the invariance in characteristics extends, beyond qualitative aspects, to the approximate 

equality of parameter values, so that the traffic from clients in the same session can be 

reasonably captured by a common model. The rest of the section provides individual details 

for each of these basic properties. 

In checking for stationarity, each frame sequence corresponding to a terminal was split in ten 

windows and the empirical density function for the frame size was calculated from the 

samples in each window. These window-densities were found very much alike (see Fig. 2a,b), 

a property directly suggesting that the sequence is stationary. As a further test, the 

convolutions of these empirical densities were constructed for pairs of windows. Again, these 

convolution densities were almost identical across window combinations (Fig. 2c,d), 

reinforcing the previous result. 

In the next stage of data analysis the autocorrelation function was directly sampled from the 

whole sequence of data. The relevant graphs appear in Fig. 3 (ignore the curves corresponding 

to model fitting results for the time being), on the basis of which two observations may be 

made. Firstly, the autocorrelation graphs for the two terminals in experiment Case 1 

(subfig. a, b) are seen to match very closely and this fact supports the claim on the statistical 

identity of these terminals’ characteristics. Secondly, the graphs exhibit a reduced decay rate 

beyond the initial lags, a behavior also noted in earlier studies [22,23,24,25,26]. In principle, 

this phenomenon can be captured by a weighted sum of two geometric terms, i.e., 

kk
k ww 21 )1( λλρ −+= ,  with 112 << λλ .  (1) 

The appeal of (1) stems from the fact that it corresponds to the general form of the 

autocorrelation function for AR(2) models (see, e.g., [6]), which have been observed [15] to 
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match well (and better than the simpler AR(1) models) some aspects of  videoconferencing 

traffic. 

In order to further check the suitability of (1), the relevant parameters were estimated through 

a least-squares fit to the autocorrelation samples for the first 500 lags. Numerical values for 

the results appear in Table 3, while the graphs of the fitted models are compared to the sample 

autocorrelations in Fig. 3. As it can be evidenced, the visual similarity of the sample 

autocorrelation curves for the two terminals in Case 1 is seconded by a close match to the 

corresponding parameter values, further reinforcing the claim on statistical identity. 

Furthermore, in all cases, the matched model (1) is able of capturing the long-term trends of 

the autocorrelation decay (see Fig. 3a-d), and this property is reflected most intensely in 

Fig. 3e for Case 2, where the model is compared against the samples over a wider range of 

lags (up to 5000).  The success of (1) may be called upon for establishing that, in agreement 

with many previous studies, as reviewed in the introduction, (a) the autocorrelation decay is 

indeed exponentially fast and (b) that the long-term decay rate is significantly slower than the 

one in the first few lags. 

As it can be seen from Fig. 3c-e, the sample autocorrelation function for the terminals in 

Cases 2 and 3 is non-monotonic, but this fact is not reflected in the respective values for 2,1λ , 

which are both positive. Fluctuations of this kind can also be obtained when the lambda-

parameters in (1) are complex (necessarily conjugate, since kρ  is real), in which case the 

autocorrelation function can equivalently be expressed as a geometrically dumped 

sinusoid [6] of the form 

ψψθλρ cos)cos( += kk
k       

for appropriate parameter values. These values were also estimated from a least squares fit to 

the autocorrelation samples (again for the first 500 lags) of Cases 2 and 3 and the results for 
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Case 2 are displayed in Table 3 and Fig. 3f, the figure displaying the graph of the fitted model 

plotted against the samples for the first 100 lags. The results suggest that the dumped sinusoid 

has a decay rate much faster than the actual one and is thus worse than the previous model. 

This failure promotes the conjecture that the autocorrelation function in cases 2 and 3 is 

actually closer to a compound geometric containing more than two terms and that the lower 

order terms are those giving rise to dumped sinusoids that account for the non-monotonicity. 

However, there is no point in further pursuing the issue towards more complex models, as the 

property of the autocorrelation that is most important for queueing is the long-term decay rate 

and this is very well captured (in all cases) by the value of parameter 1λ  in the model (1). In 

fact, by adopting a single exponential model of the form k
k 1ˆ λρ = , it is guaranteed that, for all 

lags, kk ρρ ˆ≤ , and the simpler approximation provides a conservative (from the queueing 

point of view) but asymptotically tight model, since stronger positive correlation results in 

more pronounced buffer occupancies, hence more probable overflows and longer queueing 

delays. 

When constructing the single exponential approximation, care must be exercised during the 

choice of the parameter. It is reminded that this should be set equal to the value of the 

parameter 1λ , as determined by the least squares fit of the data to the model (1) and is not 

equal to the sample autocorrelation at lag-1. The validity of this approach is further 

highlighted by observing that the values for 1λ  in Table 3 are in all cases around 0.99, a value 

close to the lag-1 autocorrelation used in previous studies, e.g., [15,20]. 

We now turn to the discussion of the frame-size distribution. The relevant (smoothed) 

histograms, as obtained from the data, are displayed in figures 4a-b (for Case 1) and 5a-b (for 

Cases 2 and 3). All empirical densities feature a bell-like shape and a slight asymmetry 

around their maximum, thus being reminiscent of a negative binomial density, of the form 
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Instead of directly dealing with the discrete density (2), in the following we work with its 

continuous counterpart, namely the Gamma density 
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These distributions share all their distinctive characteristics and it is readily possible to derive 

the parameters of one of them from those of the other, by equating the respective expressions 

for the first two moments. An important characteristic of the Gamma distribution is that, for 

integral p, it corresponds to the distribution of the sum of p iid exponentially distributed 

random variables, each with parameter µ1 . Another related feature is that the n-fold 

convolution of a Gamma density, of parameters µ  and p, is again a Gamma density, of 

parameters µ  and np , and this holds even for non-integral p. This last property was 

employed for checking that the histograms for the two terminals of Case 1, which are 

somewhat ‘distorted’ in the vicinity of their expected maxima (see Fig. 4a-b), should indeed 

by modeled by densities of Gamma form. Specifically, the convolution of each empirical 

density with itself was taken and these convolutions were clearly possessing a Gamma-like 

shape. (See Fig. 6 for the convolution corresponding to Terminal 1 of Case 1.) 

For the purpose of fitting the Gamma model to the histograms, three different parameter-

matching methods were tried. The first one was the usual moments approach, which makes 

use of the fact that the Gamma distribution has mean µp  and variance 2µp . By equating to 

the sample mean and variance, m and v respectively, one obtains mv=µ  and vmp 2= . 

The second method (called LVMAX) relates the histogram’s peak to the location at which the 

Gamma density achieves its maximum and to the value of this maximum. Indeed, 
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when 1>p , by employing (3) and requiring 0)( =′ xf , it follows that the Gamma density has 

a unique maximum at 

µ)1(* −= px .      (4) 

Through (4) and (3) one may obtain a relation that connects the location and value of the 

maximum to the shape parameter p, namely 

)(
)1()(

)1(
**

p
epxfx

pp

Γ
−

=
−−

.     (5) 

Furthermore, when p is integral, )!1()( −=Γ pp  and, by Stirling’s formula (see, e.g., [10]), 

)1(21)1(2~)( −−−−Γ pp epp π , which, combined with (5) gives 

.
2

1)( **
π
−

≈
pxfx      (6) 

Although this last equation has been derived on the assumption of integral and large p, it 

provides a very good approximation for all values of interest (with less than 8.5% relative 

error for 2≥p  and less than 1% for 10≥p ). 

On the basis of (6) and (4), measurements of both the location and value of the histogram’s 

peak, x̂  and f̂  respectively, determine the Gamma parameters as 

2ˆˆ2
1

fxπ
µ =   and  1ˆˆ2 22 += fxp π .    

Note that LVMAX does not preserve, neither the sample mean, nor the sample variance.  

Finally, the third method (called C-LVMAX) exploits the convolution property of Gamma 

densities mentioned earlier, through an application of LVMAX2 to the self-convolution of the 

                                                 
2 There’s no point in employing convolution with the moments matching method, as it gives results identical to 

those produced by an application of the method on the original empirical density.  
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histogram, followed by a division of the resulting p-value by 2, in order to recover the 

parameters corresponding to the original setting. 

Numerical results from the application of the parameters-matching methods on the data 

appear in Table 4, while the graphs for the corresponding Gamma densities are compared 

against the histograms in figures 4a-b and 5a-b. (In these figures, the curve for the LVMAX 

fit is the one, which, by design of the method, tracks exactly the histogram’s peak.) Somewhat 

surprisingly, the best results were obtained for the two terminals of Case 1, i.e., those 

corresponding to histograms of a somewhat ‘irregular’ shape. Indeed, the contents of Table 3 

show that, for Case 1, the three sets of parameters values are close to each other and that the 

mean and variance corresponding to the Gamma densities resulting from LVMAX and C-

LVMAX are close to the sample counterparts. Furthermore, the parameter values for the two 

terminals are close enough to allow a single model for the description of both histograms and 

this fact provides another bit of evidence towards the statistical identity of the traffic profiles 

from all terminals in a videoconferencing session. Note, however, that this invariance is not 

carried over to the histograms corresponding to different sessions over the same MCU mode 

but with a differing number of terminals, as the histograms of Case 1 (MCU mode 3 with two 

terminals) are significantly different from the histogram of Case 2 (MCU mode 3 with four 

terminals) and the same holds for the corresponding sample means and variances. 

Compared to Case 1, the results for the other two experiments present somewhat greater 

diversity. The respective histograms are very peaked (see Fig. 5a-b) but also contain a non-

negligible probability mass corresponding to smaller frame sizes. Due to the second 

characteristic the Gamma density resulting from the moments fit is more spread out (and 

matches by design the sample mean and variance), while, due to the peakedness, LVMAX 

tends to produce a higher value of p and this leads to a variance considerably different from 

the sample value. C-LVMAX, by virtue of the convolution’s “smoothing” effect, produces 
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intermediate results. In general, the variances resulting from the three parameter-matching 

approaches exhibit greater diversity than the corresponding mean values. 

However, the importance of matching the sample variance should not be overemphasized. 

More important for queueing is the tail of the distribution function, since this determines the 

probabilities with which large frames are produced and correspondingly high traffic rates are 

attained, leading to congestion. A particularly effective way of comparing the tails of the 

matched Gamma models to the histogram is through quantile-vs-quantile plots (q-q plots) of 

the respective (cumulative) distributions. When there is a perfect match, the q-q plot runs 

across a straight line bisecting the angle between the coordinate axes. A deviation towards one 

of the axes indicates that, in the relevant region, quantiles of the distribution corresponding to 

that axis are larger. 

The q-q plots for the Gamma models obtained from the three matching methods are displayed 

in figures 4c-e,f-h (for the two terminals of Case 1) and 5c-e,f-h (for Cases 2 and 3). As 

expected, the uniformity of results previously observed for Case 1 is also reflected in the q-q 

plots, which indicate that almost all matching methods track very closely the quantiles of the 

respective histogram. The sole exception is presented by the LVMAX fit on Terminal 2, 

where the anomaly around the expected maximum prevents its accurate detection, thus 

reducing the precision of the method. Even in this case, the convolution preprocessing of C-

LVMAX corrects the estimation, giving the most precise results for this set of data. 

For the other two cases, the q-q plots on the moments fit reflect clearly the effect of the small 

probability mass borne by smaller-than-mean frame sizes, by indicating dominance of the fit 

for low quantiles and respective lagging behind in the important higher ones governing the 

distribution’s tail. The Gamma models produced by LVMAX and C-LVMAX are better in 

this respect, tracking closely the histogram in all quantile ranges and maintaining tail 

dominance. 
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Overall, the C-LVMAX method performed best in all cases, by managing to follow closely 

the histogram in all quantiles, while also providing (tight) tail dominance and a close upper 

bound to the sample mean (see Table 4). Consequently, it is the method proposed for 

matching the Gamma parameters. Although it has the drawback of requiring full histogram 

information (instead of just the sample moments) the experiments suggest that the frame size 

distribution depends primarily on the characteristics of the MCU mode and the number of 

conferring terminals, remaining invariant for all (typical) terminal-originated traffic under 

these conditions. Thus, it appears possible to obtain the appropriate Gamma model from off-

line measurements and the drawback is no longer relevant. 

As a final comment on the parameters, it is noted that the values of p in Table 4 are high 

(always greater than 17) and this fully justifies the approximation (6) used by (C-)LVMAX. 

Moreover, these high values indicate that the asymmetry in the Gamma densities is weak, so 

that an equivalent normal density could also be used instead, a choice made in several 

previous studies [21,22,23,26,33].  

We close this section by exploiting its main conclusions towards a full model for the terminal-

originated traffic. Since the terminals exhibit correlations that can be bounded by a simple 

geometric function and Gamma distributed frame sizes, the approach of [15], namely that of 

modeling videoconferencing traffic through a DAR(1) model, is directly applicable. 

Furthermore, its success in predicting the queueing performance of videoconference 

traffic [5,14,15], including traffic resulting from video coded according to a variant of 

H.261 [16], makes it a natural choice. This model, which originally appeared in [17], 

produces a sequence of frame sizes according to the transitions of a discrete-time discrete-

state MC, of the form 

,)1( QIP ρρ −+=      (7) 
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where I is the identity matrix, ρ  is the autocorrelation coefficient at lag-1 and Q is a rank-one 

stochastic matrix with all rows equal to the probabilities resulting from the (suitably truncated 

at some maximum size) negative binomial density (2) corresponding to the Gamma fit for the 

frame size distribution. The DAR(1) has an exponentially decaying autocorrelation function 

equal to kρ  and a marginal frame-size density with probability masses equal to the elements 

of the common rows in Q. In light of the autocorrelation properties highlighted by the 

experiments’ results, it follows that ρ  should be chosen equal to the parameter 1λ  in the 

model (1), as determined from the least squares fit discussed earlier in this section, not equal 

to the sample autocorrelation at lag-1, if the long term trends in the correlation decay are to be 

preserved. Similarly, the elements for the rows of Q should be determined through the 

Gamma fit produced by the C-LVMAX method. These two details are important for ensuring 

that the resulting model will provide a conservative (but also closely accurate) traffic 

characterization during queueing studies. Note that, once the discrete DAR(1) model is 

constructed, the discrete-state continuous-time variant proposed by [31] can be readily applied 

in the standard way, towards obtaining a model more amenable to analytic treatment. 

4. Analysis of the video traffic from the MCU 

The MCU-related data were analyzed by following a methodology similar to the one used for 

the terminals’ traffic. Again, it was found that the sequence of frame sizes is characterized by 

a number of properties, which are invariant to the particular MCU mode employed. More 

specifically, the data produced by the experiments indicate stationarity (checked for by the 

techniques discussed in Section 3) and correlations with exponentially fast decay. 

The sample autocorrelation graphs for the three experiments appear in Fig. 8. As previously, 

model (1) was fit to these samples, using least squares estimation, and the relevant numerical 

values are displayed in Table 3. Again, the fit follows satisfactorily the long-term trends of the 
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decay. This time, the 2λ  parameters for the rapidly decaying term are negative, accounting 

somewhat for the non-monotonic behavior. The fit to a geometrically dumped sinusoid was 

also tried and was found again to match well the samples for the first few lags, but to have an 

overly fast decay rate (see Fig. 8d, corresponding to Case 2). On account of the discussion in 

Section 3, an upper bounding approximation for the autocorrelation function through a single 

geometric term with parameter equal to 1λ  seems appropriate for the MCU traffic too, under 

all operation modes. 

The feature that distinguishes most the MCU data from the terminal-related ones is the form 

of the marginal frame-size distribution. The relevant histograms are displayed in Fig. 9 (not 

including Case 3, which is, in all qualitative characteristics, analogous to Case 1 and is thus 

omitted). As it can be verified, the empirical densities can no longer be approximated by a 

simple Gamma form; instead, their shape resembles a weighted sum of Gamma components, 

i.e., 

∑= =
k
i ii xfaxf 1 )()( ,  ∑ => =

k
i ii aa 1 1,0 ,   (8) 

where each )(⋅if  is of the form (3). Furthermore, the number k of terms in the sum is always 

equal to the number of terminals participating in the teleconferencing. 

 In order to fit model (8) to the samples, two variants of a parameter-matching method were 

developed and applied to the data. The first variant relies on the assumption that the 

individual peaks *
ix  of the various Gamma components in the sum (8) are sufficiently far 

apart, with the implication that in the neighborhood of the i-th component’s peak the 

contribution of the other terms will be negligible, so that effectively )()( xfaxf ii≈ . On this 

assumption, the local maxima of f will approximately occur at *
ix , ki ,,1Κ= , and each 

maximum will attain a value approximately equal to )( *
iii xfa . In light of these properties, the 
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method uses the empirical density values around the local maxima for estimating the 

corresponding Gamma scale and shape parameters, iµ  and ip  respectively. The estimation 

relies on the observation that, by (3) and (4),  

,1log)1(
)(

)(
log *** ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−−=

ii
i

ii

i

x
x

x
xp

xf

xf
 for any xi, .  (9) 

Let now ix̂ and if̂  stand for the location and value of the empirical density’s i-th local 

maximum, and further let ( )nn fx , , Nn ,,1Κ=  be N other points on the density’s graph, in 

the vicinity of the same local maximum. Transform the data by setting 

)ˆlog(, inin ffY =  and 1ˆ)ˆlog(, +−= ininin xxxxX .  (10) 

Then, due to the “good separation” of the peaks and (9), 

ini
ii

ni
in Xp

xf

xf
Y ,*, )1(

)(

)(
log −=≈        

and the transformed samples around the maximum are approximately linearly related. 

Through a least squares fit to these samples, one may directly obtain the shape parameter for 

the i-th Gamma component as 

.1
1

2
,

1 ,, +
∑

∑
=

=

=
N
n in

N
n inin

i
X

XY
p       (11) 

Once the shape parameter ip  has been computed the corresponding scale parameter may be 

retrieved through (4), as )1(ˆ −= iii pxµ . 

Repetition of this procedure on samples around each local maximum provides estimates for 

the parameters of all Gamma components in the superposition (8). The final step of the 

method relates to the computation of the weight-factors ia . In principle, these may be chosen 
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so as to match the first 1−k  sample central moments im , 1,,1 −= ki Κ . Indeed, since the j-th 

central moment of a Gamma distribution is equal to jjppp µ)1()1( −++ Λ , the matching 

provides 1−k  linear equations 

,1,,1,)1()1(1 −=∑ −++= = kjjpppam k
i

j
iiiiij ΚΛ µ    

for the weights, which, together with the normalization condition in (8), provide a full system 

on the unknowns ia . However, this approach does not work well, either yielding a nearly 

singular system of equations, or leading to negative weight values. For this reason, it is better 

to follow a more direct approach, based on the fact that the value of the histogram’s i-th peak 

is )(ˆ *
iiii xfaf ≈ . Then, by (4) and (5), the value of the weight should be equal to 

)1(1
)(ˆ

−−
⎟
⎠

⎞
⎜
⎝

⎛ −
Γ=

ip
i

iiii e
p

pfGa µ ,    (12) 

where G is a proportionality constant enforcing the normalization condition in (8). This way 

of computing the weights, besides being more stable, is also easier to compute. However, it 

doesn’t guaranty the preservation of any sample moments. 

As it will be discussed shortly, the matching method just discussed works very well, even for 

the distribution corresponding to Case 1, where the two peaks are not very far apart (see 

Fig. 9a). Nevertheless, in order to ensure that the matching procedure will remain robust even 

in future applications, with empirical distributions featuring peaks even more closely spaced, 

another variant of the method, involving an iterative refinement, was also developed. The 

iterations proceed by initializing the various parameters of the density in (8) by the method 

just described, thus producing )0()0()0( ,, iii pa µ , for ki ,,1Κ= . Then, at the l-th iteration: 

 For each component ki ,,1Κ= : 
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- The effect of the other Gamma components, as currently estimated, is “removed” 

from the global empirical density )(xf , by forming the residual 

∑−= ≠
−−−

ij
l

i
l

ii
l

i
l

i pxfaxfxf ),;()()( )1()1()1()( µ , taken to stand for a multiple of 

the i-th Gamma component. 

- The location )(ˆ l
ix  and value )(ˆ l

if  of the (now global) maximum of )()( xf l
i  are 

determined and further samples on the graph of this function are gathered, in the 

neighborhood of the peak. 

- The samples are transformed according to (10) and are used in the least-squares 

estimator (11) for the determination of )(l
ip . The new estimate for the scale 

parameter is obtained as )1(ˆ )()()( −= l
i

l
i

l
i pxµ . 

 The new set of weight factors )(l
ia  is obtained through (12). 

Both variants of the method were applied to the data from Cases 1 and 2 and Table 5 contains 

the parameter values after the initialization step (first variant) and after subsequent iterations. 

It may be observed that the iterations converge quite rapidly even in the less favorable Case 1 

(for Case 2 convergence is reached at the first step). Note also that, although the weight 

fitting (12) is not designed to match any sample moments, the resulting model (8) maintains a 

mean and variance that are close to the sample counterparts. It should be observed that the 

values for the p-parameters are high (and quite high for Case 2, due to the intense peakedness 

exhibited by the corresponding histogram). This fact suggests that the histograms could have 

been fitted to a weighted sum of normal components, with almost equivalent results. 

Further evidence for the success of the matching procedure is provided by Fig 9, which 

contains graphs of the resulting Gamma superpositions and compares them against the 
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corresponding histograms. As it can be observed, the fitted models follow closely the 

empirical densities.  The same figure also includes q-q plots for the respective distributions, 

which also indicate a satisfactory behavior. The plot for Case 2 tracks almost perfectly the 

histogram’s quantiles, while that of Case 1 is less tight. 

In parallel to the concluding remarks of Section 3, it is noted that the characteristics of the 

MCU data suggest the potential of using a modified DAR(1) model to describe the relevant 

traffic. The ρ  parameter in (7) can be matched as for the terminals, while the probabilities in 

the rows of Q should be set equal to a weighted sum of negative binomial probabilities, using 

the weights ia , ki ,,1Κ= , from (8). In this arrangement ∑= =
k
i iiQaQ 1 , where each iQ  

employs only the negative binomial density equivalent to the i-th Gamma component. The 

resulting DAR(1) model has the same complexity with the models describing terminal-

originated traffic. 

5. Conclusions 

This paper reported on an experimental study of H.261-encoded video traffic during the 

course of realistic videoconferencing sessions, hosted by a modern asymmetric platform that 

included client-terminals communicating over an IP-network and being coordinated through 

an MCU, which operated in continuous presence mode. The experiments covered various 

cases with differing number of terminals and different quality-related MCU-parameters. 

Analysis of the collected data established general results about the video traffic originating 

both from the clients and the MCU. 

Traffic from the terminals was seen to be stationary and to possess an autocorrelation function 

decaying exponentially fast. Although the correlations are more complex than a simple 

geometric model, careful choice of the decay rate allows the construction of a conservative 

(with respect to queueing behavior) but asymptotically tight such approximation. Another 
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property of the terminals’ traffic is that the distribution of frame sizes may be satisfactorily 

approximated by a PDF of Gamma form, although an unconventional fitting of the model 

parameters, according to the C-LVMAX method, was seen to be more appropriate (again, 

with respect to queueing) than the usual moments matching approach. These observations are 

useful for the appropriate parameterization of DAR(1) models, for the purpose of describing 

the traffic from videoconferencing clients in network performance studies. 

In general, the terminal-related findings of the paper, being the outcome of a comprehensive 

set of realistic experiments on an actual system using a practical implementation of H.261, 

can be regarded as validation, reinforcement and extension of earlier results and as additional 

justification for the modeling practices arising from them, in particular those based in the 

DAR(1) model. 

The MCU traffic was also observed stationary and possessing an autocorrelation function that 

decays exponentially fast and can be conservatively approximated by an appropriately chosen 

single exponential term. However, the distribution of the frame sizes is not conformant to a 

simple Gamma PDF. Instead, it was found that this distribution is closely approximated by a 

weighted sum of Gamma PDFs, the terms in this sum always being equal to the number of 

client-terminals in the corresponding videoconference session. The paper discussed methods 

for calculating the appropriate model parameters from the observed data and proposed a 

simple adaptation of the DAR(1) model for usage with the MCU video traffic. 

The more complex traffic pattern of the MCU is due to the fact that the latter combines on 

output several video streams. The combination pattern would be different if the MCU were 

operating in a combined continuous/switched presence mode (i.e., concurrently presenting the 

output from up to four selected terminals and switching to another one whenever it becomes 

active). Study of the traffic produced by the MCU under this more complex mode will be the 

subject of future research. 
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Table 1. Videoconferencing modes on the Cisco IP/VC 3510 MCU 

Mode Description Frame Rate Max. Video Bit Rate for 
terms/MCU (Kbit/s) 

Max. # 
Parties 

Output Picture 
Format 

1 Low Quality 7.5 110/400 5 CIF 
2 Low Quality 7.5 110 5 QCIF 
3 High Quality 15 320/1280 4 CIF 
4 Low Quality 15 100/400 5 CIF 
5 Super Quality 30 720 5 QCIF 
6 Medium Quality 30 320 5 QCIF 
7 Voice Only ⎯ ⎯ 4 ⎯ 
8 Super Quality 30 720 4 QCIF 
9 Voice Only ⎯ ⎯ 4 ⎯ 

10 Dynamic Rate 30 ~ 5 QCIF 
11 Full Room 15 110 14 QCIF 
12 Good Quality 7.5 220 3 QCIF 

 

Table 2. Summary of relevant quantities for each experiment 

Case No 1 2 3 

Term/MCU Term (1) Term (2) MCU Term MCU Term MCU 

MCU Mode 3 3 4 

Parties 2 4 2 

Experiment Duration 
(sec) 3386 1888 9293 

Total # Video Frames 26334 27016 28652 18543 18619 28632 31661 

Video Bit Rate 
(Kbits/s) 204 209 408 208 812 63 127 

Frame rate (fps) 8.2 8.0 8.5 9.8 9.9 3.1 3.4 

Average Frame Size 
(Bytes) 2988 3062 5779 2581 10081 2353 4520 

Variance of Frame 
Size (Bytes2) 527161 525127 2927935 165174 9734163 301882 1423909 
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Table 3. Model parameters fitted to sample autocorrelation graphs for traffic from 
terminals and MCU 

Parameters for compound 
exponential fit 

kk
k ww 21 )1( λλρ −+=  

Parameters for exponentially 
dumped sinusoid 

ψψθλρ cos)cos( += kk
k   

Experiment 

w 1λ  2λ  λ  θ  ψ  

Case 1 Term 1 0.5857 0.9980 0.5115 

Case 1 Term 2 0.5190 0.9985 0.6261 

0.1579 0.9944 0.6009 

 

Case 2  
 0.5089 0.0068 0.0421 Te

rm
in

al
s 

Case 3  0.2103 0.9936 0.4522 

Case 1 MCU 0.3319 0.9985 -0.0352 

0.0462 0.9989 -0.2124 

 

Case 2 MCU 
 -0.6364 0.8926 3.3086 M

C
U

 

Case 3 MCU 0.1795 0.9968 -0.0058  

 

Table 4. Gamma parameters for the various fitting methods applied to terminals’ data 

Gamma Param. Moments 
Experiment Fitting 

Method p µ mean variance 
Sample  2988.88 527161.50 

MOM 16.95 176.37 2988.88 527161.50 

LVMAX 23.07 133.60 3081.60 411710.61 

Case 1 
Term 1 

C-LVMAX 17.31 176.33 3053.17 538375.47 

Sample  3062.39 525127.92 

Mom 17.86 171.48 3062.39 525127.92 

LVMAX 20.59 131.34 2704.34 355193.13 

Case 1 
Term 2 

C-LVMAX 18.59 167.55 3114.28 521807.77 

Sample  2581.22 165174.29 

Mom 40.34 63.99 2581.22 165174.29 

LVMAX 124.42 21.22 2640.22 56024.61 

Case 2 
 

C-LVMAX 97.71 27.17 2655.09 72144.41 

Sample  2353.02 301882.91 

Mom 18.34 128.30 2353.02 301882.91 

LVMAX 37.26 66.19 2466.19 163224.58 

Case 3 
 

C-LVMAX 25.66 94.93 2435.46 231194.00 
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Table 5. Parameter matching of weighted Gamma terms in MCU frame-size histograms 

Experiment Case 1 Case 2 
Iteration Init 1 2 3 Init 1 

p1 16.24 16.40 16.39 16.39 129.25 129.25 

p2 32.23 32.46 32.46 32.46 309.81 309.81 

p3 - - - - 367.62 367.62 

p4 - - - - 657.52 657.52 

µ1 163.07 161.38 161.45 161.45 17.29 17.29 

µ2 181.39 180.11 180.11 180.11 17.15 17.15 

µ3 - - - - 25.63 25.63 G
am

m
a 

Pa
ra

m
et

er
s 

µ4 - - - - 20.56 20.56 

a1 0.16 0.16 0.16 0.16 0.02 0.02 

a2 0.84 0.84 0.84 0.84 0.14 0.14 

a3 - - - - 0.46 0.46 w
ei

gh
ts

 

a4 - - - - 0.38 0.38 

mean 5779.08 10081.69 Sample 
Moments variance 2927935.92 9734163.80 

mean -0.078 -0.078 -0.078 -0.078 +0.020 +0.020 Relative 
Difference variance -0.197 -0.200 -0.200 -0.200 -0.070 -0.070 
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Figure 2. Frame size histograms in different windows (left) and convolutions of such 
histograms (right) 
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Figure 1. Testbed topology 
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Figure 3. Autocorrelation graphs and fitted models for traffic from terminals: a,b,c,d: 
graphs and exponential fits for Term. 1&2 of Case 1 and terminals of Cases 3&2 (in 
stated sequence); e: wider range of fit for Case 2; f: dumped sinusoidal fit for Case 2  
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Figure 4. Frame size histograms and Gamma models for terminals in Case 1. Left 
Term 1, right Term 2. Top row for histograms and: moments fit (solid), LVMAX (dash-
dot), C-LVMAX (dash). 2nd to 4th row for qqplots of histogram (hor. Axis) vs: moments 

fit, LVMAX, C-LVMAX (in stated order) 
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Figure 5. Frame size histograms and Gamma models for terminals in Cases 2 (left) and 
3 (right). Top row for histograms and: mom. fit (solid), LVMAX (dash-dot), C-LVMAX 

(dash). 2nd to 4th row for qqplots of histogram (hor. Axis) vs: mom. fit, LVMAX, C-
LVMAX (in stated order) 
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Figure 6. Convolution of the frame sizes histogram for Term 1 of Case 1 with itself 
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Figure 8. Autocorrelation graphs and fitted models for MCU traffic. a,b,c: graphs and 
exponential fits for Cases 1,3,2 (in stated sequence); d: dumped sinusoidal fit for Case 2 
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Figure 9. Frame size histograms and Gamma models for MCU in Cases 1 (top) and 
2 (bottom). Right column for qqplots of histogram (hor. Axis) vs fit 


