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Abstract: - We have created an innovative method for the production of binary series of arbitrary length, 
which appear to be random to an uninformed third party. Our method is based on the symbolic dynamics of a 
special family of recursive maps exhibiting extremely complex trajectories in their phase space. Among other 
applications, our binary series can be used as encryption keys in protocols based on the Vernam ‘one time 
only’ secure communication protocol. Based on fast software implementation, due to the simple form of the 
defining formulas, such protocols would combine the absolute security of the Vernam protocol with an ease 
and speed of use that would permit their application in every form of digital communications in the Internet or 
any other communication network, including wireless and mobile telephony. 
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series, “one time only”, security, communication protocols. 
 
1   Introduction 
The issue of encryption is today the most important 
problem for communication security [1-
4],[10],[17],[19-22],[31-32]. The reasons are simple. 
Today’s trend is to expand, globalize and unify 
digital network communication and sharing of 
resources and services. This expansion and future 
globalization is expected to be achieved on a 
substantially advanced technology anticipated in the 
near future, including, among others, 128-bit 
processors, terabit storage capacities, all optical 
circuits and, above all, quantum computers. 
Furthermore, there is the expressed desire and 
strategic target of the Information Society decision 
makers all over the world to convert cable and fiber 
communication networks into wireless ones. 
Without proper security measures the Internet and 
all wide area communication networks would be 
turned into a hackers’ paradise. 
 
The encryption protocols and techniques 
commercially available today can barely hold the 
burden of secure communications as it stands on the 
present state of the art. The main problem is that, 
given enough computing power, all encryption 
methods available today are vulnerable to 
eavesdropper attacks, at least in theory. The only 
exception is the well known Vernam ‘one time key’ 
protocol. But even in its modern form, Quantum 
Key  Distribution, this method, though theoretically 
safe, is so cumbersome and expensive, both in 

money and in time and network resources, as to be 
almost impossible to apply in a large area digital 
communications and information exchange 
networks, such as the Internet [1-4],[19],[31-32].  
 
We have a method to generate ‘apparently random’ 
binary number series of arbitrary length, to be used 
as   encryption keys in a Vernam type, “one time 
only use”, encryption protocol. The implementation 
of the key is the same as in all ‘one time key’ 
applications. The key is added bit by bit, by a XOR 
operation, to the unencrypted binary file containing 
the message. The receiver of the message applies the 
same XOR operation to decrypt it.  
Our keys will be created by the use of a family of 
discontinuous discrete dynamic systems and their 
symbolic dynamics. They should best be described 
by the following Equations [1-4],[19],[32], also see 
[5-9],[11],[13-15],[18],[23-30]: 
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are successive position vectors 
in the system’s phase space, A, B suitable matrices 
with the absolute value of their determinant larger 
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an arbitrary input vector and 

( )( ( ))S x n
r  the sign vector to be explained below. In 

this presentation, the work will be restricted to two 
dimensions: 
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The function sgn(x) has value -1 if x < 0 and 1 
otherwise. Therefore, ( ( ( ))S x n

r  is a vector with the 

sign functions of the position vector’s coordinates as 
its coordinates. 
 
There have been considered many methods to create 
binary symbolic series from the above Equations, to 
be used as encryption keys. These series obviously 
are not really random, since they are created by a 
well understood and repeatable mathematical 
recursive method. Yet they should appear as 
‘random’ series of binary digits to a third party. The 
apparent ‘randomness’, or, in other words, the lack 
of any apparent structure in the series should be 
theoretically proven by topological arguments and 
ascertained by appropriate statistical tests available 
in the Internet there are many suits of tests, some of 
them considered the most well known and 
commercially acceptable. The NIST tests and those 
published by prof. George Marsaglia [16] are 
included. The best methods examined so far yield 
test results which are 80-90% successful. The 
method is still at the calibration stage and hopefully 
better results will appear soon. 
 
Due to the above described property, the usual 
problems of key distribution would not exist here. 
No need for repeated meetings of trusted parties for 
distribution of new key pads. The small number of 
parameters necessary for the generation of each key 
may be included in the previous message. This way 
the integrity of communication would be preserved. 
Only one initial contact will be required, in order to 
distribute the exact form of the dynamic system and 
a first set of parameters.  
Our method will generate a theoretically arbitrary 
length of key series, starting from a small number of 
initial parameters each time. The defining equations, 
due to the discontinuous ‘step’ and ‘modulo’ 
functions they include, are especially sensitive to 
initial conditions. As a result, the space of different 
keys is extremely large. If the dynamic system is 
defined by a ten dimensional vector equation, then 
the number of different keys may be of the order of 
10^2000. As appropriate tests have proven, there is 
no cross correlation between the keys.  
 
Due to the above properties, the method would be 

suitable for many Internet applications, including e-
mail encryption and possibly wireless and mobile 
phone applications. If the above arguments hold, the 
method will be secure even against attacks applying 
massive parallel processing, by the use of quantum 
algorithms. This is because of the randomness and 
the extremely large key space. 
 
An added advantage is that our method of secure 
communication may combine, for distributing the 
protocol and procedure information and thus 
initiating the communication process, an established 
QKD setup [1-4],[19],[31],[32] chosen from those 
available commercially today. So a practical and 
feasible application for such protocols will be 
offered since the QKD protocol should be used just 
once, at the beginning of communications, to safely 
initiate first contact. From then on, our method will 
be applied as described without help from QKD. 
Any other safe method for the initiation of 
communications, such as personal contact or trusted 
messengers, is equally acceptable. 
 
In the following, a specific example of our method 
will be presented. It will be based on a simple map 
containing a linear part and a sign vector singularity, 
modulated by a MOD function, so as to remain 
bounded and not escape to infinity. In Section 2, the 
properties of the initial system, containing a rotation 
matrix and the sgn(x) singular function, will be 
given. In Section 3, the system will be studied after 
an essential modification. A perturbation coefficient 
will be added to the rotation matrix and a MOD 
function. In Section 4, the theoretical and 
experimental arguments for the usefulness of the 
map as a random number generator and an 
encryption system will be presented. In Section 5, 
the results will be discussed and some final 
conclusions will be drawn. 
 
 
2   Study of the Initial Map 
In its simplest form, the recursive map has the form 
given below. 
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Here the linear part of the map is a rotation by a 
constant angleφ , while the vector 1

2
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  is 



the sign vector ( )( ( ))S x n
r

 described above. By 

computer study it becomes obvious that the behavior 
of the map depends mainly on the angle of rotation 
φ . For values of φ  from the interval: ( , )π π− , the 
map exhibits a stable behavior for 

( / 2, / 2)φ π π∈ − . For values of φ outside this 
interval, the map goes on to infinity. The fastest rate 
of divergence is for φ π= . 
 

 
Figure 1. Image of the coordinate system under the Eq.I map 

 
In Fig. 1 a rotation of the coordinate system by the 
angle φ  is shown. The axes rotate from position X1-
X2 to position Y1-Y2. If the angle of rotation φ  is 
less than ( / 4, / 4)π π− , then the trajectories of the 
map are all bounded. In Fig. 1, the distance of the 
point A from the origin indicates the maximum 
distance of a trajectory point in this case. 
If | | ( / 4, / 2)φ π π∈ , the map’s trajectories may go 
on to arbitrarily large but always finite size, 

depending on the initial conditions . 1

2
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There are some very characteristic features in Fig. 1 
First of all, there is a fundamental square with 

apices . There are four 

diagonal lines, with a 450 degree inclination, 
creating a small diamond-oriented square of side 
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pointing anticlockwise from axes X1, X2, to Y1, Y2. 
Then the application of the sign vector will image 
the 0 quadrant of a circle having the origin as center 
onto a quadrant of an equal circle, with its center at 

point 
1
1

−⎛ ⎞
⎜ ⎟−⎝ ⎠

 and radius 2 (not shown). The image 

will be rotated anticlockwise by the angle φ . If the 
radius of the circle is equal to the distance of the 
origin to the point A, then the image of A would be 
equidistant to A from the origin. So, the circle 
mentioned above is an attractor of all trajectories for 
the specific angleφ . A formal proof of this fact is 
given in detail elsewhere [32]. In contrast, if a 
smaller circle, with the origin as center and a radius 

equal to 2
2  is considered (not shown), it is 

obvious that its image, with  as center, or, for 

that matter, with any of the apices of the larger 
square as center, will not intersect with it except at 
one point of contact. This means that the image of 
any point within this smaller circle is further from 
the origin than the initial point. So the smaller circle 
is in fact a repeller for any angle

1
1

−⎛ ⎞
⎜ ⎟−⎝ ⎠

φ . 
 
The conclusion is that any trajectory, no matter what 
the initial conditions are, is contained within a 
specific annular region, with outer boundary the 
circle of radius from the origin to A and inner 

boundary the circle of radius 2
2 . This 

observation is the starting point to an argument, 
presented elsewhere [Bakopoulos, Soulioti to be 
published], by which for every angleφ  in the 
interval ( )/ 4, / 4π π−  there are trajectories of 
completely non-periodic behavior, which are 
uncountably infinite in quantity.  The fact that this 
map and its modifications are suitable for 
pseudorandom number generation has the above 
argument as its starting point, as will be discussed in 
Section 5. 
  
The trajectories usually consist of a number of 
circles, distributed in various ways among the four 
quadrants. In exception, if the initial point is on the 
center of one of the circles, the corresponding 
trajectory consists only of the centers of all the 
circles. On the other hand, if there is a distance 
between the initial point and the center of the 
corresponding circle at the same quadrant, the 
trajectory consists of points belonging to the 
corresponding circles, of equal radii with the 
distance of the initial point from its center. 
 
 



 
Figure 2. Fundamental trajectories of the basic system 

 
In general, each trajectory is characterized by its 
passing through a series of quadrants. The numbers 
0, 1, 2, 3, characterize the quadrants of the plane. As 
the quadrants are visited in succession by the map 
points, their designated numbers comprise the 
symbolic series of the map (Fig. 2). 
 
If the points of the map are identical to the centers of 
the corresponding trajectory circle, then the 
trajectory is periodic with its period equal to that of 
the corresponding symbolic series. Such a trajectory 
is called ‘primary’. If the symbolic series is periodic 
but the points of the map do not coincide with the 
centers of the trajectory circles, then the trajectory is 
called ‘secondary’. In that case, if the ratio π φ  is 

rational, the secondary trajectory consists of the 
apices of suitable regular polygons inscribed to the 
circles of the trajectory. Then the secondary 
trajectory is periodic and its period is equal to the 
period of the symbolic series, multiplied by the ratio 
2λπ

φ
, λ  being a suitable positive integer. If the 

ratio is irrational, the points of the map continue to 
cover the circles’ perimeters ‘almost everywhere’, 
except for a countable set of points. This is called a 
quasi- periodic trajectory [1],[3-4],[19],[32]. 
 
In Fig. 2, some fundamental trajectories are 
indicated. If the four quadrants of the Euclidean 
plane are indicated as in Fig. 2, by the numbers 0, 1, 
2, 3, then a trajectory is described by the four largest 
outer circles. Such a trajectory is indicated as 0-1-2-
3….At each step of the recursive map, the vector 
indicating the state of the system follows the above 
given order as it changes from one quadrant to 
another. The relative position of the map point to the 
center of its circle remains constant. If the initial 
point is one of the centers of the four circles, then 
the trajectory consists of the four centers only. In 

that case it is called a primary trajectory and it is 
periodic for every value of φ  from the interval 
( / 2π− , / 2π ). If the initial point is at a distance 
from the corresponding center in the same quadrant, 
then the distance remains constant for the whole 
trajectory. The relative orientation of the straight 
line joining the center of a circle with the 
corresponding trajectory point changes 
anticlockwise by φ at every step. This way, when a 
point arrives at quadrant 0,its new position on the 
trajectory circle of this quadrant is moved by 4φ  
anticlockwise.  
 
In Fig. 2, two more trajectories are indicated. One of 
them is characterized by the numbers 0-2 and is 
indicated by the two smaller circles in the 
corresponding quadrants. The other is characterized 
as 1-3 and is indicated by the two other small circles. 
 
In Fig. 3 the circles indicating the three various 
trajectories, 0-1-2-3, 0-2, 1-3, can be seen. These are 
the maximum size circles that may support these 
trajectories. Their centers define the primary 
trajectories with period the same as the period of 
their symbolic series. The secondary trajectories lie 
on circles of equal radii, with size varying from zero 
to the maximum size shown in Figs 2 and 3. 
 
If the above mentioned ratioπ φ   is an irrational 

number, the trajectory has at most the size of the 
maximum circle, as in Fig. 3. Then this circle is 
called ‘the area of influence’ of the trajectory for the 
specific symbol in the symbolic series. If the ratio 
π
φ  is rational, then the area of influence is an 

appropriate regular convex polygon. The polygon’s 
order depends on the angle of rotation and the form 
of the symbolic series. Typically, for the 0-1-2-3 
trajectory and for a rotation angle / 6φ π=  the 
corresponding shape is a hexagon, while for the 
same trajectory and / 4φ π=  the respective polygon 
is an octagon. On the other hand for a period 2 
trajectory like the 0-2 or the 1-3, the maximum 
polygon for / 6φ π=  is a dodecagon, a polygon of 
12 sides. 
Another definition for the area of influence is that it 
is the maximum object that may follow a trajectory 
with a given symbolic series. 
 
A description of the properties of the basic map is 
given elsewhere [1],[3-4],[19],[32]. The properties 
of recursive maps including similar discontinuities 



has been studied extensively in the relative 
literature. 
 

 
Figure 3. The mechanism of application of the basic map 

 
The 0-1-2-3, 0-2 and 1-3 trajectories presented 
above exist for every value of . The 
0-1-2-3 trajectory is symmetric to 90

( )/ 2, / 2φ π π∈ −
0 degree 

rotations and inversions with the axes of symmetry 
inclined by / 2φ  clockwise, relative to the 
coordinate system of the plane. The 0-2 and 1-3 are 
symmetric as a family, in the sense that a 900 degree 
rotation of one trajectory will bring it onto the other. 
The axes of symmetry are inclined by / 2φ  
anticlockwise relative to the coordinate axes. This is 
not true for other trajectories, which may, or may 
not, exist for all values of φ . There are certain 
empirical rules which seem to be obeyed by most 
trajectories: (a) There are no repetitions of a symbol 
of a quadrant within a symbolic series period. This 
rules seems to be broken only in special cases of 
trajectories with an area of influence restricted to a 
point or a line segment on an axis. Such degenerate 
trajectories exist for example for / 4φ π=  and are 
of the form: 2-0-0-2-3-1-3-1 or: 0-2-0-2-3-1-1-3. 
These are restricted on an area of influence in the 
form of a straight line segment. (b) There may not be 
reversals of direction. Forφ  positive, such reversals 
as 1-0 or 3-2 have not been observed. A 0 must be 
followed by 1 or a 2. The reverse is true for negative 
angle of rotation. No exceptions to this rule have 
been observed within a periodic symbolic series. 
 
For best understanding of the issue of periodic and 
non periodic symbolic series and trajectories, the 
concept of pre orbit points must be examined. By 
pre orbit points we define those points that appear 
during the initial steps of a recursive map before its 
symbolic series enters its proper period. The pre 

orbit points are by definition of finite number, and 
are characterized by the fact that they are isolated. 
There is always a circle around each of them within 
which no other point of the same trajectory exists. 
These properties distinguish a set of pre orbit points, 
no matter how large in size, from a non periodic 
trajectory. In the latter case, the number of points is 
infinite and they are not separable. Any number of 
other points may be found within a circle around a 
specific point of a non periodic trajectory, however 
small. 
 
Examples of such non periodic trajectories are the 
trajectories found for specific initial conditions for 
values of φ  equal to / 6π  and 4 / 9π  (see Figs in 
[32]). 
 
 
3. The Extended Map 
From the study of the initial map some conclusions 
may be drawn. First of all, although there is a very 
large complexity in the form and variety of the 
map’s trajectories, there is also a large amount of 
order, contrary to the requirement of ‘apparent 
randomness’. Even in the non periodic trajectories, 
whenever they occur, there are certain restrictive 
rules and symmetries. The three rules of the periodic 
symbolic series are not so rigid for the non periodic 
ones but still repetitions of the symbols are rare and 
reversals such as mentioned in the previous sector 
even rarer. This would prevent the use of the system 
as it is for ‘apparently random’ number generation. 
A slight modification created the potential for 
further study of the structure and better 
understanding of the system. The introduction of a 
perturbation parameter ε  in the rotation matrix, as 
described by Eq.IV,  changed the behavior of the 
map to the point of making ‘almost all’ trajectories 
non periodic and most of them unstable [1-
4],[19],[32], [Bakopoulos, Soulioti to be published]. 
For small values of the perturbation parameter, of 
the order of 310ε −=  or less, the trajectories appear to 
‘jump’, from one stable trajectory of the previous 
system (Eq. III), to the other, in an apparently 
random manner, ultimately depending on the 
moment in discrete time when the trajectory will 
pass from one area of influence to another by 
crossing into a quadrant not corresponding to the 
previous trajectory. This will inevitably happen 
since the determinant of the matrix in Eq. IV is now 
larger than one, so that the distance of the trajectory 
point from the center of each area of influence 
cannot remain constant. Periodic trajectories are of 
measure zero due to the high instability of the 



system. In fact, although predictable by the Equation 
defining the system [32], they are not apparent by 
computer experimentation. Instead in Figures of 
[32], all trajectories and symbolic series appear non 
periodic, a fact that presents hope for random 
number generation. 
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Still, for such small values of the perturbation 
parameter, the symbolic series maintain enough 
structure and similarity to the initial system to 
remain unsuitable for the required applications. If 
larger values of ε . Such as 0.1ε = , or larger, were 
used, the system became unstable and went to 
infinity. To remedy this situation, a MOD function 
was introduced (Eq.V). 
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In (V), p  is a positive real number and ε  takes 
large values, typically much larger than 1. The MOD 
function essentially ‘folds’ the plane inside a square 
of side with the origin as its center. 2 p
 
4. Applications of the Map In 
Encryption 
The map of Eq.V has the potential for the production 
of random numbers of such ‘apparent randomness’ 
that they may be applied to encryption schemes as 
explained in the Introduction. This is due to 
theoretical reasoning as well as computer study and 
appropriate statistical tests. 
 
There are many ways to create a series of numbers 
from (V). The simplest way is to use the symbolic 
series of non periodic trajectories. It must be 
converted into binary form and, depending on the 
manner of the conversion, it will pass the 
commercial statistical tests available in the Internet 
to a rate of about 60%. Improved methods include 
special functions and modifications such as taking 
the nth decimal point of a coordinate value and put it 
in MOD(2) form. Since the modulo class of 2 has 
only two members. 0 and 1, the result is a binary 
series. These series have been tested by the available 
tests, with success approaching 100%. 
 

The theory predicts such behavior, since the maps 
defined by Eq.III,IV,V contain the sign function, the 
perturbation parameter and the appropriate MOD 
functions. The sign function introduces a large 
complexity due to its unpredictable ‘jumping’ from 
one quadrant to another. This is supported by the 
theoretical proof of the existence of an uncountably 
infinite number of non periodic series [Bakopoulos, 
Soulioti to be published]. The perturbation 
parameter reveals this complexity and finally the 
MOD function keeps it in a manageable form. 
 
Besides the theoretical arguments, our method was 
tested by the tests of the NIST Institute, the tests 
provided on line by Prof. G. Marsaglia [16] and by 
some innovative method created by Dr K. 
Karamanos [12], at the Free University of Brussels. 
In a test where the key was created by taking the 
MOD(2) of the tenth decimal point of the first 
coordinate of the map points, the success reached 
practically 100%, on a sample of some 200 keys of 
1000000 bits length. Transinformation and 
intercorrelation test also indicate a very large 
sensitivity to initial conditions, up to the 20th 
decimal point.  
 
The other requirements for a binary encryption key 
are that the series are repeatable, fast and easy to 
construct and the key space must be large, so as to 
preclude brute force attacks. This is achieved 
because of the extreme sensitivity of the system 
even to the smallest variations of the parameter 
values. There are many ways to create a key from a 
map of the general form given by Eq.I. One way to 
increase the complexity is to increase the dimensions 
of the map from 2 to something larger. It is the 
authors’ opinion that the use of even a 10 
dimensional state space would not make the 
application to heavy for on line use. In this extreme 
case, assuming a normal 32 bit processor, a network 
of Java enabled computer systems would be able to 
handle calculations with 10 - 20 decimals and 
communicate without delay problem. In that case, a 
system like the one described by Eq.I, with two 
10x10 matrices and a ten dimensional initial 
conditions vector would depend on more than two 
hundred parameters. If each parameter has a 
sensitivity of 10-10 to 10-20 decimals and for 100 
parameters the variations are (10-10)-200 in multitude, 
the key space would contain 102000 keys, enough to 
withstand a brute force attack even from a quantum 
computer. For less sensitive content, the dimension 
of the application may be less, depending on the 
security demands. These are the arguments on which 
the use of the method for encryption applications is 



based. 
 
Although the authors are convinced of the suitability 
of their method for applications, there are still open 
questions and details to be clarified. Even if the 
increasing of dimensions seems to be the best 
method for strengthening security, other 
possibilities, such as the increase of the decimals or 
the introduction of more discontinuous functions are 
possible and will be the subject of further research. 
 
 
5. Conclusions 
In the previous sectors, a  recursive map has been 
presented and studied in various forms, described by 
Eq.I-V with increasing complexity. The existence of 
non periodic trajectories in the map’s state space, 
the unpredictability introduced by the discontinuous 
functions sign and modulo, as well as the 
perturbation induced by the parameterε , make 
possible the creation of series of ‘apparently 
random’ binary digits, suitable for use in demanding 
applications such as encryption. The properties of 
the ensuing encryption methods and protocols have 
the required properties in terms of security, 
repeatability, ease and speed of use and a large 
enough key space to face and withstand brute force 
attacks even by a quantum computer. Although it 
may be concluded that there exist strong arguments 
for the suitability of the system for the highest level 
security communications, there is ground for further 
study and development to improve the method, This 
may be the direction of future research. 
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