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ABSTRACT 
 In this paper a fully automatic system for embedding visually recog-
nizable watermark patterns to video objects is proposed. The architec-
ture consists of 3 main modules. During the first module unsupervised 
video object extraction is performed, by analyzing stereoscopic pairs 
of frames. In the second module each video object is decomposed into 
three levels with ten subbands, using the Shape Adaptive Discrete 
Wavelet Transform (SA-DWT) and three pairs of subbands are 
formed (HL3, HL2), (LH3, LH2) and  (HH3, HH2). Next Qualified Sig-
nificant Wavelet Trees (QSWTs) are estimated for the specific pair of 
subbands with the highest energy content. QSWTs are derived from 
the Embedded Zerotree Wavelet (EZW) algorithm and they are high-
energy paths of wavelet coefficients. Finally during the third module, 
visually recognizable watermark patterns are redundantly embedded 
to the coefficients of the highest energy QSWTs and the inverse SA-
DWT is applied to provide the watermarked video object. Perform-
ance of the proposed video object watermarking system is tested un-
der various signal distortions such as JPEG lossy compression, sharp-
ening, blurring and adding different types of noise. Furthermore the 
case of transmission losses for the watermarked video objects is also 
investigated. Experimental results on real life video objects are pre-
sented to indicate the efficiency and robustness of the proposed 
scheme. 
Keywords: video object (VO), Shape Adaptive Discrete Wavelet 
Transform, visually recognizable watermark pattern, Qualified Sig-
nificant Wavelet Tree. 

1. INTRODUCTION 
During the last decade the significant improvement of PCs’ com-

putational power and the rapid growth in hardware by creating low-
cost portable devices, allowed for easy manipulation, replication and 
distribution of digital media such as documents, images, video and 
audio. However the large amounts of visual information have led to 
an emerging need for copyright protection of intellectual property. To 
confront this problem digital watermarking has been proposed as a 
means to identify the owner of the digital data and detect illegal dis-
tribution paths. The watermarking process encodes hidden copyright 
information into the digital media, by modifying the original data 
either in the spatial or in the frequency domain. Consumer electronics 
devices with watermarking support have recently appeared as com-
mercial products. 

On the other hand, the MPEG-4 video coding standard has intro-
duced the concept of Video Objects (VOs), which correspond to se-
mantic entities. Such an object-based representation is very useful for 
a variety of applications including retrieving and indexing of visual 
information, efficient image/video coding and image/video editing. 
These semantic entities make the produced content far more reusable 
and flexible, leading to a migration from a frame-based to an object-
based consideration of digital media. This object-based representation 
provides several functionalities and it can allow for better protection 
of media content, leading to object-based watermarking [1]. 

Several frame-based digital watermarking algorithms have been 
proposed in the literature. Early techniques embed the watermark in 

the least significant bits (LSBs) of image pixel [2]. However, this 
technique and some other proposed improvements [3], [4], except of 
having relatively low-bit capacity they are also not resistant enough to 
lossy image compression, cropping and other image processing at-
tacks. On the contrary, frequency-domain-based techniques are more 
robust to attacks. In particular Cox et. al. [5] embed a set of i.i.d. se-
quences, following a Gaussian distribution, into the perceptually most 
significant frequency components of an image. In [6], visually recog-
nizable patterns are embedded, by selectively modifying the middle 
frequencies of the image obtained using the DCT transform. Other 
approaches such as [7], [8], [9] use the Discrete Wavelet Transform 
(DWT) to hide data in the frequency domain. In most of the afore-
mentioned techniques the watermark is a random sequence of bits and 
can be detected only by employing a detection theory scheme. Fur-
thermore, all the aforementioned approaches are frame-based and thus 
semantically meaningful video objects composing a frame may not be 
sufficiently protected. 

On the other hand, little work has been done in literature towards 
object-based watermarking. In [10] a digital watermarking scheme of 
objects is proposed, based on the 2-D/3-D shape adaptive discrete 
wavelet transform with Arbitrary Regions Of Support (AROS). The 
watermark in this scheme is an i.i.d. Gaussian distributed vector vari-
able, added to all high-pass bands of an object in the wavelet domain. 
In [11], the embedding scheme exploits the shape of video objects and 
the watermark is a random sequence transformed to fit the scale and 
orientation of them. However, both approaches use no segmentation 
algorithm, assuming that VOs are pre-segmented, i.e., they are a pri-
ori available. In [12], a motion oriented segmentation algorithm is 
used to detect VOs and the watermark is a pseudorandom sequence, 
embedded to the DCT coefficients in an 8x8 block resolution. Never-
theless in this approach, the detected objects are motion regions and 
therefore this scheme cannot be straightforwardly applied to images 
where no motion information is available.  Finally in the work of [13] 
a cocktail watermarking technique is proposed where again the wa-
termark is an i.i.d. Gaussian distribution. The proposed system incor-
porates low-level texture segmentation for object detection, which 
faces difficulties in correctly separating semantically meaningful 
entities. Furthermore, in all the aforementioned approaches, the wa-
termark is a random variable sequence instead of a visually recogniz-
able pattern. In this paper, a fully automatic video object-based wa-
termarking system is designed and implemented for stereoscopic 
video sequences. Two of the main contributions of the proposed ap-
proach are: (a) The system is fully automatic, using an efficient unsu-
pervised video object segmentation scheme, which exploits depth 
information and (b) visually recognizable patterns such as binary, 
grayscale or color images are embedded to each video object, in con-
trast to existing object-based approaches. Thus selection of experi-
mental thresholds during watermark detection is avoided, as the re-
trieved watermark is recognizable. In particular in the proposed ap-
proach initially video objects are unsupervisedly extracted by incor-
porating the method proposed in [14]. Then, each unsupervisedly 
extracted video object is decomposed into three levels by applying a 
shape adaptive discrete wavelet transform (SA-DWT) [15], providing 
ten subbands.  Afterwards, three pairs of subbands are formed, (HL3, 



HL2), (LH3, LH2) and (HH3, HH2) and the pair with the highest energy 
content is selected. For this pair Qualified Significant Wavelet Trees 
(QSWTs) are detected [7] in order to select the coefficients where the 
watermark should be casted. QSWTs, which are based on the defini-
tion of the Embedded Zerotree Wavelet (EZW) algorithm [16], are 
high-energy paths of coefficients within the selected pair of subbands 
and enable adaptive casting of watermark energy in different resolu-
tions, achieving watermark robustness. Then, the watermark pattern is 
redundantly embedded to both subbands of the selected pair, using a 
non-linear insertion procedure that adapts the watermark to the energy 
of each wavelet coefficient. Finally, the inverse SA-DWT is applied 
to produce the watermarked video object. Differences between the 
original and watermarked video objects are imperceptible to human 
eyes, while watermarked video objects are robust under different 
combinations of image processing attacks and transmission losses. 
Experimental results exhibit the efficiency of the proposed automatic 
video object-watermarking scheme. 
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Figure 1: Video object segmentation using the proposed tube-
embodied Gradient Vector Flow (GVF) method [14]. (a,d) The 
“out” and “in” boundaries of the tubes around the video objects 
for a frame of the “Eye to Eye” sequence and the “Claude” se-
quence.  (b,e) The gradient vector flow fields inside the tubes. 
(c,f) The detected video objects. 

 
2. UNSUPERVISED VIDEO OBJECT SEGMENTATION 

The first module of the proposed watermarking scheme includes 
an efficient unsupervised video object segmentation process. In this 

paper, the fast and accurate video object extraction method proposed 
in [14] is incorporated, which exploits depth information. In particu-
lar, for each stereoscopic pair of frames initially the disparity field is 
computed followed by an occlusion detection and compensation algo-
rithm [17]. This procedure leads to the estimation of an occlusion 
compensated depth map. Afterwards, a segmentation algorithm is 
applied to the depth map, providing a depth segments map. Depth 
information is an important feature for content description, since usu-
ally video objects are composed of regions located on the same depth 
plane [18]. However, object boundaries (contours) cannot be identi-
fied with high accuracy by a depth segmentation algorithm, mainly 
due to erroneous estimation of the disparity field, even after it has 
been improved by the occlusion detection and compensation algo-
rithm.  For this reason, contours of depth segments are refined using a 
Gradient Vector Flow (GVF) scheme [19]. In particular, inside each 
depth segment, a GVF field is computed, which is incorporated for 
adjusting the depth segment’s contour. In our case, the GVF field is 
estimated only within a tube region, leading to a significant reduction 
of the computational complexity. The "out"-boundary of the tube 
coincides to the depth segment’s contour, while the "in"-boundary is 
constructed by shrinking the "out"-boundary using an edge map con-
straint [14]. Finally an active contour is unsupervisedly initialized 
onto the "out"-boundary of the tube and is guided to the video ob-
ject’s boundary, driven by the tube-embodied GVF field. In Figure 1 
the tube generation for a frame of the “Eye to Eye” sequence and a 
frame of the standard sequence “Claude” is presented, while in Fig-
ures 1(c,f) the detected video objects are shown. 
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 Figure 2: SA-DWT decomposition of a video object. Arrows point 
from parent subbands to respective children subbands. “In-Node” 
coefficients are pixels that belong to the video object. “Out-Node” 
coefficients do not belong to the video object. 

3. SHAPE ADAPTIVE DISCRETE WAVELET TRANSFORM 
AND QUALIFIED SIGNIFICANT WAVELET TREES 

Shape-adaptive discrete wavelet transform (SA-DWT) was pro-
posed in [15], for efficiently coding arbitrarily shaped visual objects. 
The SA-DWT transforms the samples in an arbitrarily shaped region 
into the same number of coefficients in the subband domain, while 
preserving the spatial correlation, locality and self-similarity across 
subbands. Furthermore for a rectangular region, the SA-DWT be-
comes identical to the conventional wavelet transform. In the frame-
work of video object watermarking, where regions of arbitrary shape 
are considered, the SA-DWT should be adopted as it is contour-
sensitive, providing exact values of the wavelet coefficients at the 



border of each video object. On the contrary, the conventional DWT 
provides wavelet coefficients of usually higher (than the real) values 
in the borders of video objects, since the area around video objects 
(background area) is also considered. Thus more reliable QSWTs are 
detected when using the SA-DWT. 

By applying the SA-DWT once to an area of arbitrary shape, four 
parts of high, middle, and low frequencies, i.e. LL1, HL1, LH1, HH1, 
are produced. Band LL1 (HH1) includes low (high) frequency compo-
nents both in horizontal and vertical direction, while the HL1 (LH1), 
includes high (low) frequencies in horizontal direction and low (high) 
frequencies in vertical direction. Subband LL1 can be further decom-
posed in a similar way into four different subbands, denoted as LL2, 
HL2, LH2, HH2 respectively. This process can be repeated several 
times, depending on the specific application. An example of video 

object decomposition into three levels with ten subbands using the 
SA-DWT is depicted in Figure 2. In this figure, a parent-child rela-
tionship is defined between wavelet coefficients at different scales, 
corresponding to the same location. For example, the subbands LH3, 
LH2, LH1 follow a parent-child relationship.  The coefficient at the 
highest level is called the parent, and all coefficients corresponding to 
the same spatial location at the lower levels of similar orientation are 
called children. For a given parent, the set of all coefficients at all 
finer scales of similar orientation corresponding to the same location  
are called descendants. In Figure 2 arrows point from parent pix-
els/subbands to the respective children pixels/subbands. The wavelet 
coefficients can be distinguished into two types; the “In-Node” coef-
ficients which belong to the video object area and the “Out-Node” 
coefficients which do not belong to  

the video object. 
In the proposed video object watermarking scheme, coefficients 

with local information in the subbands are chosen as target coeffi-
cients for casting the watermark. Coefficients selection is based on 
Qualified Significant Wavelet Trees (QSWTs) derived from the Em-
bedded Zerotree Wavelet algorithm (EZW) and the necessary defini-
tions are given below. 

Definition 1: An “In-Node” wavelet coefficient xn(i,j) ∈ D is a 
parent of xn-1(p,q), where D is a subband labeled HLn, LHn, HHn, 
p=2i-1|2i, q=2j-1|2j, n>1, i>1 and j>1. Symbol | corresponds to the 
OR-operator.  The xn-k(p,q) are called descendants of  xn(i,j),  for 
1≤k<n. 

Definition 2: If an “In-Node” wavelet coefficient xn(i,j)  and all its 
descendants xn-k(p,q) for 1≤k<n satisfy |xn(i,j)|<T,   |xn-k(p,q)|<T for a 
given threshold T, ∀ p=2i-1|2i, q=2j-1|2j, then the tree xn→ xn-1 …→ 
xn-k is called wavelet zerotree [16]. 

Definition 3: If an “In-Node” wavelet coefficient xn(i,j) satisfies 
|xn(i,j)|>T, for a given threshold T, then xn(i,j) is called a significant 
coefficient [16]. 

Definition 4: If an “In-Node” wavelet coefficient xn(i,j) ∈ D, 
where D is one of the subbands labeled HLn, LHn, HHn, satisfies 
|xn(i,j)|>T1 and its “In-Node” children xn-1(p,q) satisfy            |xn-

1(p,q)|>T2, for given thresholds T1 and T2, ∀ p=2i-1|2i,    q=2j-1|2j, 
then the “In-Node” parent xn(i,j) and its “In-Node” children xn-1(p,q) 
are called a Qualified Significant Wavelet Tree (QSWT). 

 
t=0 
   QSWT[t]=Ø 
      For i=1 to N /* N x M  is the size of subband LH3. */ 
 For j=1 to M 
     If x3(i,j)∈LH3 is “In-Node” AND x3(i,j)≥T1 
  If  {  
   x2(2*i-1, 2*j-1) ∈LH2  is "In-Node"  
   AND x2(2*i-1, 2*j-1)≥T2 

     AND x2(2*i-1, 2*j) ∈LH2 is "In-Node" 
                 AND x2(2*i-1, 2*j) ≥T2  
    AND x2(2*i, 2*j-1) ∈LH2 is "In-Node" 
   AND x2(2*i, 2*j-1) ≥T2  
         AND x2(2*i, 2*j) ∈LH2 is "In-Node" 
         AND x2(2*i, 2*j) ≥T2    

         } 
                            QSWT[t]=x3(i, j) + x2(2*i-1, 2*j-1) + x2(2*i-1, 2*j)+  
                                  + x2(2*i, 2*j-1)+ x2(2*i, 2*j) 
   t=t+1 
  End If 
     End If 
 End For j 
       End For i 
 
Figure 3: Pseudocode for the qualified significant wavelet trees 
(QSWTs) estimation 

 

4. VIDEO OBJECT WATERMARKING: EMBEDDING AND 
EXTRACTION METHODS 

After unsupervised video object extraction is accomplished, each 
video object is decomposed into three levels with ten subbands, using 
the SA-DWT. In the following, the watermark image, which is a visu-
ally recognizable pattern, is redundantly embedded to the host video 
object, by modifying the QSWT coefficients of one of its subband 
pairs. In particular, for each video object three pairs of subbands are 
examined (since the decomposition is performed into three levels) for 
possible watermark casting; pair P1 consisting of subbands (HL3, 
HL2), pair P2 of subbands (LH3, LH2) and finally pair P3 of (HH3, 
HH2). The pair of the highest energy content compared to the other 
two pairs is selected as the most appropriate for watermark casting. 
Let us denote as 

kPE  the energy of Pk, k=1,2,3, which is defined as 

the sum of the squares of "In-Node" wavelet coefficients of the re-
spective pair of subbands Pk. 

 ∑∑∑∑ +=
p qi j

p qpxjixE k
2

2
2

3 )],([)],([  k=1,2,3 (1) 

where x3(i,j) is an “In-Node” wavelet coefficient of the respective 
subband, x3(i,j)∈Rk, k=1,2,3, with R1=HL3, R2=LH3 and R3=HH3. 
Similarly, x2(p,q)∈Sk, k=1,2,3, with S1=HL2, S2=LH2 and S3=HH2. 

Then the most appropriate pair for watermark casting is selected 
as the one that maximizes the energy, 

 kp
k
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,3,2,1

maxargˆ
=

=  (2) 

4.1 The Watermark Embedding Method 
After selecting the pair of subbands with the highest energy con-

tent, QSWTs are detected for the selected pair kPˆ  and the visually 

recognizable watermark is cast by modifying the values of the de-
tected QSWTs. In order to estimate the QSWTs, we need to deter-
mine the two threshold parameters T1, T2.  In our case, the average 
values over all "In-Node" wavelet coefficients of the respective sub-
bands of the selected pair are used as threshold values, 

 ∑∑=
i j

jix
N

T ),(1
3

1
1 , "In-Node" kRjix ˆ3 ),( ∈   (3a) 

 ∑∑=
p q

qpx
N

T ),(1
2

2
2 , “In-Node” 

k
Sjix ˆ2 ),( ∈  (3b) 

where 1N ( 2N ) is the number of "In-Node" wavelet coefficients of 

kR ˆ ( kS ˆ ). 

QSWTs are detected using these threshold values. To better clarify 
the proposed algorithm, a piece of pseudo-code is given in Figure 3.  
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Figure 4: Watermark embedding method. 
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Figure 5: Watermark extraction method. 

 
For simplicity purposes, we assume that pair 2P  has been selected 
and that all four children x2(p,q) of parent x3(i,j) are “In-Node” wave-
let coefficients. Other cases, where only some of the children are “In-
Node” coefficients, can be addressed in a similar way. 

Assuming that the watermark pattern is of size axb, the axb larg-
est values of array QSWT[t] (see Figure 3) are selected to cast the 
watermark. Let us assume that the ),(3 lmx  wavelet coefficient is the 

nth significant value of array QSWT[t], with ban ⋅≤ . Then, the 
value of ),(3 lmx  is modified as 

 )),(1(),(),( 333 lmwclmxlmx ′′⋅+⋅=′  (4) 

where ),( lmw ′′  is the nth greatest gray-scale value of the digital 
watermark, c3 is a scaling constant that balances the robustness of 
watermark casting and ),(3 lmx′  is the modified wavelet coefficient. 
As is observed, the nth significant value of array QSWT[t] is modi-
fied by the nth greatest value of the watermark image. Small values of 

),(3 lmx  are modified by small values of the watermark image to 

avoid image artifacts, while when ),(3 lmx  is large the watermark 
energy is increased for robustness. 

The child coefficient of ),(3 lmx  is modified in a similar way. In 

particular, among all children of ),(3 lmx  the child with the maxi-
mum wavelet coefficient is selected and used for watermark casting. 

 )),(1(),(),( 222 lmwcsrxsrx ′′⋅+⋅=′  (5) 

where ),(2 srx  is the child of ),(3 lmx  with the maximum wavelet 
coefficient value: 
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In the previous equation and without loss of generality, we have as-
sumed that all children of ),(3 lmx  are “In-Node” wavelet coeffi-
cients. 

Finally the inverse SA-DWT is applied to the modified and un-
changed subbands to form the watermarked video object. A graphical 
representation of the watermark embedding method can be seen in 
Figure 4. In this figure arrows show the flow direction of the process 
from step 1 (video object extraction) to step 5 (inverse SA-DWT). 

4.2 The Watermark Extraction Method 
The watermark extraction method uses the original host video ob-

ject and the scaling constants (c2 and c3) to extract the watermark 
pattern (if present) from the video object under question. Towards this 
direction the following steps are performed: 

Step 1: Initially the original video object oV  and the video object 

under question qV  are decomposed into three levels with ten sub-

bands using the SA-DWT, 



 woV , = SA-DWT( oV ) (7a) 

 wqV , =SA-DWT( qV )  (7b) 

where woV ,  and wqV ,  correspond to the shape adaptive wavelet 

transforms of video objects oV  and qV  respectively. 

Step 2: The highest energy pair of subbands is detected for the 

video object woV ,  using equation (2). Let us assume that ox3  is one 

of the ba ⋅  most significant wavelet coefficients of object woV ,  in 
the selected subband pair of the third decomposition level. The re-

spective wavelet coefficient of object wqV ,  is denoted as qx3 . Then, 

the watermark is extracted by solving equation (4) with respect to the 
gray-scale values of the watermark 

 )/()(ˆ 33333 cxxxw ooq ⋅−=  (8) 

where 3ŵ  refers to respective estimated gray-scale value of the wa-
termarked pattern as is obtained from the third resolution level. This 
value may differ from the original watermark values, since several 
image processing attacks can be performed on the watermarked im-
age. 

Similarly, we can estimate the same watermark value from the 
second decomposition level. 

 )/()(ˆ 22222 cxxxw ooq ⋅−=  (9) 

where qx2 , ox2  are the respective wavelet coefficients at second de-

composition level of woV ,  and wqV , . 

Step 3: The estimated gray-scale values 3ŵ  and 2ŵ  are first av-
eraged and then rearranged to form the watermark pattern. Rear-
rangement is performed since the values of the watermark pattern 
have been sorted before watermark casting as described in Section IV. 
A graphical representation of the watermark extraction method can be 
seen in Figure 5. In this Figure arrows show the flow direction of the 
process from step 1 (video objects SA-DWT) to step 5 (watermark 
rearrangement). 

5. EXPERIMENTAL RESULTS 
The effectiveness and robustness of the proposed video object 

watermarking system has been extensively tested under various image 
processing attacks, using real life stereoscopic video sequences. In 
Figures 6 and 7 two frames of the “Eye2Eye” sequence are presented, 
which are used for evaluation purposes. This sequence is a stereo-
scopic television program of about 25 minutes total duration (12,739 
frames at 10 frames/sec) and was produced in the framework of the 
ACTS MIRAGE project in collaboration with AEA Technology and 
ITC. Left channels of the stereoscopic pairs are depicted in Figures 
6(a) and 7(a), while the unsupervisedly extracted foreground video 
objects are depicted in Figures 6(b) and 7(b), using the method re-
ported in Section II. In the performed experiments, a grayscale image 
of size 6x20 pixels containing the characters “NTUA” is used as wa-
termark pattern for the host video object of Figure 6(b) and a binary 
image of size 8x22 with characters “IVML” for the host video object 
of Figure 7(b). The watermark patterns are shown in Figures 6(c) and 
7(c). 

 
Then according to the sizes of the watermark images, the top 120 

values and the top 176 values of QSWTs are selected for embedding 
the watermarks in the first and second case respectively. Furthermore 

for simplicity in our experiments c2 and c3 are constants in all fre-
quency bands and equal to c2=0.1 and c3=0.15 respectively. The wa-
termarked video objects are depicted in Figures 6(d) and 7(d). 

 
(a) 

 

 
 
 
 

 

(b) (c) (d) 
Figure 6: (a) Original left channel of a stereoscopic pair (b) Unsu-
pervisedly extracted original foreground video object (c) Water-
mark pattern and (d) Watermarked video object. 

 

 
(a) 

 

 
 
 

 

(b) (c) (d) 
Figure 7: (a) Original left channel of a stereoscopic pair (b) Un-
supervisedly extracted original foreground video object (c) Wa-
termark pattern and (d) Watermarked video object. 

 
As it can be observed in both cases the embedded watermarks are 

imperceptible. Additionally Table I contains the extraction results 
from Figures 6(d) and 7(d) (without any attacks) using the proposed 
method. In the same table the PSNR values of the video objects after 
embedding the watermark patterns are also provided. In the per-
formed experiments PSNR is computed by: 
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where )(⋅a  is a function that returns the number of pixels of an arbi-

trarily shaped region and ),( jiVo , ),( jiVq  are the pixel values of 

objects oV  and qV  respectively. 

In the following, the robustness of the proposed system under 
various attacks such as JPEG lossy compression, gaussian noise, blur-
ring, sharpening and lossy transmission is investigated. Furthermore, 
an objective criterion is used to evaluate how close is the extracted 
watermark image to the original one. In our case, the correlation coef-
ficient is selected as appropriate similarity measure. Let us denote as 
w  the vector containing the gray-scale values of the original water-



mark and as w′  the vector containing the values of the estimated 
watermark. Then, the standard correlation coefficient is defined as: 
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where w  is the mean value of w  and w′  the mean value of w′ . 
Correlation can be used as a complimentary criterion to the sub-

jective interpretation of extracted visually recognizable images and it 
is useful for automatic detection of watermarked video objects. 
 

TABLE I 
WATERMARK EXTRACTION FROM VIDEO OBJECTS OF FIGURES 6(d) AND 7(d) 

WITHOUT ATTACK 
 1st case 2nd  case 

Embedded watermark 
  

PSNR (dB) 44.3 45.7 
Extracted watermark 

  
TABLE II 

WATERMARK EXTRACTION FROM VIDEO OBJECT OF FIGURE 6(d) IN CASE OF 
JPEG COMPRESSION 

Compression Ratio 23.4 28.1 35.4 
PSNR 34.4 32.1 29.7 

Extracted Watermark    
ρ 0.874 0.81 0.773 

TABLE III 
WATERMARK EXTRACTION FROM VIDEO OBJECT OF FIGURE 7(d) IN CASE OF 

JPEG COMPRESSION 
Compression Ratio 21.9 25.2 31.4 

PSNR 37.1 35.7 32.6 
Extracted Watermark   

ρ 0.993 0.967 0.931 
TABLE IV 

WATERMARK EXTRACTION FROM VIDEO OBJECT OF FIGURE 6(d) IN CASE OF 
GAUSSIAN NOISE AND IMAGE PROCESSING ATTACKS 

Image Operation Gausian Noise Sharpen Blur 
PSNR 29.2 30.2 23.5 

Extracted Water-
mark 

   

ρ 0.886 0.821 0.93 

5.1 Robustness against JPEG Lossy Compression 
Table II shows the watermark extraction results from JPEG-

compressed versions of the watermarked video object of Figure 6(d), 
with compression ratios of 23.4, 28.1, and 35.4. Similar results in case 
of the host video object of Figure 7(d) are presented in Table III, 
where the compression ratios in this case are 21.9, 25.2 and 31.4. As 
it can be observed the extracted watermark image is still in viewable 
even under the highest compression ratios. The difference in quality 
between the extracted binary and grayscale watermark images is also 
evident. This is however expected and justified since during binary 
watermark detection only two levels should be distinguished in con-
trast to the grayscale case where 256 levels exist. Furthermore high 
values of both correlation criteria and in all cases are in total agree-
ment to the extracted visually recognizable patterns. 

5.2 Robustness against Noise and Image Processing Attacks 
Robustness of the proposed scheme against gaussian noise and 

image processing attacks such as sharpening and blurring is investi-
gated in this subsection. In particular during transmission, noise may 
be added to watermarked video objects, which can be modeled in 
some cases as gaussian noise. On the other hand, sharpening opera-

tions are usually performed to enhance the quality of original video 
objects, while smoothing operations, which blur video objects, are 
used to decrease artifacts, created by transmission channels of poor 
quality. In Table IV watermark extraction results are presented for 
video object of Figure 6(d). Similar results for the second case [video 
object of Figure 7(d)] are depicted in Table V. In both Tables and for 
all cases the extracted watermark patterns are highly correlated to the 
original watermarks and are clearly recognizable. 

 
TABLE V 

WATERMARK EXTRACTION FROM VIDEO OBJECT OF FIGURE 7(d) IN CASE OF 
GAUSSIAN NOISE AND IMAGE PROCESSING ATTACKS 

Image Operation Gausian Noise Sharpen Blur 
PSNR 30.4 32.1 24.8 

Extracted Water-
mark 

  

ρ 0.912 0.922 0.95 
TABLE VI: 

WATERMARK EXTRACTION FROM VIDEO OBJECT OF FIGURE 6(d) IN CASE OF 
MIXED IMAGE PROCESSING ATTACKS AND JPEG COMPRESSION 

Image Operations Sharpen + 
Blur 

Sharpen + Blur under 
JPEG compression ratio 

=15.7  
PSNR 30.7 27.4 

Extracted Water-
mark 

  

ρ 0.741 0.653 
TABLE VII: 

WATERMARK EXTRACTION FROM VIDEO OBJECT OF FIGURE 7(d) IN CASE OF 
MIXED IMAGE PROCESSING ATTACKS AND JPEG COMPRESSION 

Image Operations Sharpen + 
Blur 

Sharpen + Blur under 
JPEG compression ra-

tio =16.3  
PSNR 33.2 29.6 

Extracted Water-
mark 

  

ρ 0.892 0.847 

5.3 Robustness against Combinations of Image Processing 
Operations and JPEG Compression 

A very interesting and common category of attacks combines 
mixed image processing operations together with JPEG compression. 
Mixed image processing operations can enhance the overall quality of 
video objects, while JPEG compression decreases the data size of the 
final video objects. In our experiments sharpening and blurring opera-
tions are performed to the watermarked video objects of Figures 6(d) 
and 7(d) and then JPEG compression is applied. Tables VI and VII 
show the watermark extraction results for the two video objects. The 
video object of Figure 6(d) is enhanced and afterwards compressed 
with ratio 15.7 providing a PSNR value of 27.4 dB. Similar image 
processing operations are performed to the video object of Figure 
7(d), where now the compression ratio is 16.3 providing PSNR equal 
to 29.6 dB. Again, in all cases the extracted watermark patterns are 
highly correlated to the original watermarks, while the contained 
characters in each pattern are in most cases easily recognizable. 

5.4 Robustness against JPEG Compression and Lossy Trans-
mission 

In this subsection the case of JPEG compression and lossy trans-
mission is investigated. Such an attack is common since images may 
be compressed before transmission, while in unstable QoS networks 
(e.g. mobile) transmission losses are usual. In our experiments and for 
each JPEG-compressed watermarked VO, lossy transmission simula-
tions were performed for different Bit Error Rates (BERs). Results are 
presented for 3 different BERs of 3x10-4, 1x10-3 and 3x10-3, consider-



ing that typical average BERs for cellular mobile radio channels are 
between 10-4 and 10-3 [21]. Results of the retrieved watermark pat-
terns for the first and second video objects are given in Tables VIII 
and IX respectively. As it can be observed from these tables, the pro-
posed system is also robust to this type of attack. Correlation values 
are high for the extracted watermark patterns, while even under heavy 
transmission losses retrieved patterns are still recognizable. 

 
TABLE VIII 

WATERMARK EXTRACTION RESULTS FROM VIDEO OBJECT OF FIGURE 6(d), 
UNDER COMBINATIONS OF JPEG COMPRESSION AND DIFFERENT BERS 

JPEG Com-
pression Ratio 

2.6 2.6 2.6 5.1 5.1 5.1 

BER 3x10-4 1x10-3 3x10-3 3x10-4 1x10-3 3x10-3 
PSNR 37.1 35.9 32.9 36.8 35.2 31.8 

Extracted Wa-
termark 

 

 
 

 
 

 
 

 
  

ρ  0.914 0.897 0.853 0.902 0.874 0.835 
TABLE IX 

WATERMARK EXTRACTION RESULTS FROM VIDEO OBJECT OF FIGURE 7(d), 
UNDER COMBINATIONS OF JPEG COMPRESSION AND DIFFERENT BERS 

JPEG Com-
pression Ratio 

2.9 2.9 2.9 5.5 5.5 5.5 

BER 3x10-4 1x10-3 3x10-3 3x10-4 1x10-3 3x10-3 
PSNR 38.6 36.9 34.5 37.8 35.9 33.7 

Extracted Wa-
termark 

    

ρ  0.997 0.983 0.961 0.989 0.976 0.954 

6. CONCLUSION 
In this paper, a wavelet-based watermarking system is proposed, 

which embeds visually recognizable watermark patterns such as bi-
nary, grayscale or color images, to the most significant wavelet coef-
ficients (QSWTs) of host video objects. Since watermark patterns are 
recognizable, selection of experimental thresholds during watermark 
detection can be avoided, in contrast to existing object-based ap-
proaches where i.i.d. distributions are embedded. 

The system consists of three main modules: (a) unsupervised 
video object extraction, (b) shape adaptive wavelet decomposition 
(SA-DWT) and QSWTs detection and (c) watermark embedding. 
Video objects are automatically extracted using depth information, 
tube-embodied Gradient Vector Flow fields and active contours. Each 
video object is then decomposed into three levels with ten subbands 
using the SA-DWT transform and for the highest energy pair of sub-
bands, QSWTs are estimated. Finally, a watermark pattern is embed-
ded to the best QSWTs of each video object using a non-linear inser-
tion procedure that adapts the watermark pattern to the energy of each 
specific wavelet coefficient. 

Experimental results show that hidden watermarks are perceptu-
ally invisible, statistically undetectable and thus difficult to extract 
without knowledge of the embedding method. Furthermore the wa-
termarks are resistant against several types of plain and mixed image 
processing attacks. Watermarked video objects are also tested under 
compression and lossy transmission simulations, providing also very 
promising results. Additionally, a correlation measure has been 
adopted for automatic detection of watermark patterns so as to avoid 
use of text recognition algorithms. 

In future research, oblivious watermark retrieval methods should 
also be investigated. Additionally schemes for directive spreading of 
watermark information should be implemented to cover all different 
regions of a video object (e.g. face and body of a human VO). Finally 
cases of rotation, scaling and cropping attacks, combined with image 
processing operations, should be analytically investigated. 
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