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Abstract

In this manuscript, methods for modelling and parameter assessment of unconstrained
and constrained videoconference traffic are proposed. In the case of unconstrained traffic
the encoder operates in an independent of the network mode (open-loop) while in con-
strained traffic the encoder has knowledge of the networking constrains and operates using
rate-control algorithms (in the loop). The analysis of extensive data that were gathered
during experiments with popular videoconference terminals, as well as, of traffic traces
available in literature, suggested that while the unconstrained traffic traces exhibited high
short-term correlations, the constrained counterpart patterns appeared to be mostly un-
correlated, in a percentage not affecting queueing. On the basis of these results, this
study discusses methods for accurate modelling and analytical treatment of both types of
traffic. Extensive model-based queuing results, in single-source and multiplexed environ-
ments, using continuous methods, compared to trace-driven results, confirm the validity
of our modelling proposals.

Keywords : videoconference traffic, unconstrained, constrained, network performance, VBR
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Introduction

H.26x videoconference traffic is expected to account for large portions of the multimedia traffic
in future heterogeneous networks (wire, wireless and satellite). The videoconference traffic
models for these networks must cover a wide range of traffic types and characteristics because
the type of the terminals will range from a single home or mobile user (low video bit rate), where
constrained video traffic is mainly produced, to a terminal connected to a backbone network
(high video bit rate), where the traffic is presented to be both constrained and unconstrained.
Furthermore, successful videoconference traffic modelling can lead to a more economical network
usage (improved traffic policing schemes), leading to lower communication costs and a more
affordable and of higher quality service to the end-users.

Partly due to the above reasons, the modelling and performance evaluation of videoconfer-
ence traffic have been extensively studied in literature and a wide range of modelling methods
exist. The results of relevant early studies [2],[4],[5],[6],[7],[8],[9],[10] concerning the statistical
analysis of variable bit rate videoconference streams being multiplexed in ATM networks, in-
dicate that the histogram of the videoconference frame-size sequence exhibits an asymmetric
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bell shape and that the autocorrelation function decays approximately exponentially to zero.
An important body of knowledge, in videoconference traffic modelling, is the approach in [7]
where the DAR(1) [1] model was proposed. More explicitly, in this study, the authors noted
that AR models of at least order two are required for a satisfactory modelling of the exam-
ined H.261 encoded traffic patterns. However, in the same study, the authors observed that a
simple DAR(1) model, based on a discrete-time, discrete state Markov Chain performs better
- with respect to queueing - than a simple AR(2) model. The results of this study are further
verified by similar studies of videoconference traffic modelling [9] and VBR video performance
and simulation ([8] and [12]). In [15], Dr Heyman proposed and evaluated the GBAR process,
as an accurate and well performed single-source videoconference traffic model.

The DAR(1) and GBAR(1) models provide a basis for videoconference traffic modelling
through the matching of basic statistical features of the sample traffic. On this basis and
towards the modelling of videoconference traffic encoded by the Intra-H261 encoder of the ViC
tool, the author in [18] proposed a DAR(p) model using the Weibull instead of the Gamma
density for the fit of the sample histogram. In [19], the authors introduced a Continuous Markov
chain model, called C-DAR, which is based on the DAR model and is suitable for theoretical
analysis. In the same study, the authors concluded that Long Range Dependence (LRD) has
minimal impact on videoconference traffic modelling (conclusion also declared in [14]). Looking
at the C-DAR model as a Markov modulated rate process, as in [3], the same study’s authors
applied the fluid-flow method to compare the C-DAR versus a trace-driven simulation. The
C-DAR(1) model, via the fluid-flow method, has the advantage of being analytically treated
and as a result can be directly applicable to VBR video traffic engineering studies (used as a
modelling validation method in the current study).

Relevant newer studies of videoconference traffic modelling reinforce the general conclusions
obtained by the above earlier studies by evaluating and extending the existing models and also
proposing new methods for successful and accurate modelling. An extensive public available
library of frame size traces of unconstrained and constrained MPEG-4, H.263 and H.263+ off-
line encoded video was presented in [21] along with a detailed statistical analysis of the generated
traces. In the same study, the use of movies, as visual content, led to frames generation with
a Gamma-like frame-size sequence histogram (more complex when a target rate was imposed)
and an autocorrelation function that quickly decayed to zero (a traffic model was not proposed
though in the certain study).

Of particular relevance to our work is the approach in [22], where an extensive study on
multipoint videoconference traffic (H.261-encoded) modelling techniques was presented. In this
study, the authors discussed methods for correctly matching the parameters of the modelling
components to the measured H.261-encoded data derived from realistic multipoint conferences
(in ”continuous presence” mode).

The above studies certainly constitute a valuable body of knowledge. However, most of the
above studies examine videoconference traffic traces compressed by encoders (mainly H.261)
that were operating in an unconstrained mode and as a result produced traffic with similar char-
acteristics (frame-size histogram of Gamma form and strong short-term correlations). Today,
a large number of videoconference platforms exist, the majority of them operating over IP-
based networking infrastructures and using practical implementations of the H.261 [25], H.263
[26],[27] and H.263+ [26],[27] encoders1. The above encoders operate on sophisticated commer-
cial software packages that are able of working in both unconstrained and constrained modes
of operation. In unconstrained VBR mode, the video system operates independently of the
network (i.e. using a constant quantization scale throughout transmission). In the constrained
mode, the encoder has knowledge of the networking constraints (either imposed off-line by the

1Although a newer encoder, namely, H.264, exists, it is not in a compatible version yet and only two
commercial video systems where found to support it, which could not establish a common H264 communication.
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user or on-line by an adaptive bandwidth adjustment mechanism of the encoder) and modulate
its output in order to achieve the maximum video quality for the given content (by changing the
quantization scale, skipping frames or combining multiple frames into one). Furthermore, most
of the previous studies have dealt with the H.261-encoding of movies (like Starwars) that exhibit
abrupt scene changes. However, the traffic patterns generated by differential coding algorithms
depend strongly on the variation of the visual information. For active sequences (movies), the
use of a single model based on a few physically meaningful parameters and applicable to a
large number of sequences does not appear to be possible. However, for videoconference, this is
more probable as the visual information is a typical head and shoulders content that does not
contain abrupt scene changes and is consequently more amenable to modelling. Moreover, an
understanding of the statistical nature of the constrained VBR sources is useful for designing
call admission procedures. Modelling constrained VBR sources, to the best knowledge of these
authors, is an open area for study. Our approach towards this direction was to gather video
data generated by constrained VBR encoders that used a particular rate control algorithm to
meet a particular channel constraint and then model the resulting trace using techniques similar
to those used for unconstrained VBR. The difficulty with this approach is that the resulting
model could not be used to understand the behaviour of a constrained VBR source operating
with a different rate control algorithm or a different channel constraint. However, given that
in constrained VBR the encoder is in the loop, it is more likely that network constraints are
not violated and that the source operates closer to its maximum allowable traffic. This may
make constrained VBR traffic more amenable to modelling than unconstrained VBR traffic.
The basic idea is that we can assume worst case sources (i.e. high motion contents), operating
close to the maximum capacity and then characterize these sources.

Taking into account the above, it is important to examine whether the models established
in literature are appropriate for handling this contemporary setting in general. It is a matter
of question whether all coding strategies result in significantly different statistics for a fixed or
different sequence. Along the above lines, this study undertook measurements of the videocon-
ference traffic encoded, during realistic low and high motion head and shoulders experiments, by
a variety of encoders of popular commercial software modules operating in both unconstrained
and constrained modes. Moreover, the modelling proposal was validated with various traces
available in literature [21] (to be referred as ”TKN traces” from now on).

The rest of the manuscript is structured as follows: section 1 describes the experiment
characteristics and presents the first-order statistical quantities of the measured data. Section
2 discusses appropriate methods for parameter assessment of the encoded traffic. In subsection
2.3, our modelling results are validated through the comparison of model-based and trace-driven
simulations. Finally, section 3 culminates with conclusions and pointers to further research.

1 The experimental and measurement work

The study reported in this manuscript employed measurements of the IP traffic generated by
different videoconference encoders operating in both unconstrained and constrained modes.
More explicitly, we measured the traffic generated by the H.26x encoders2 included in the
following videoconference software tools: ViC (version v2.8ucl1.1.6) [32], VCON Vpoint HD
[33], France Telecom eConf 3.5 [34] and Sorenson EnVision [35]. These are: H.261, H.263
and H.263+. All traces examined in the current study are representative of the H.26x family
video systems. Especially, the ViC video system uses encoders implemented by the open H.323

2The NV, NVDCT, BVC and CellB encoders [11] were examined in [24] and it was found that they resulted
in similar traffic patterns with the H.261 encoder. Thus the modelling proposal for H.261, in the current study,
is applicable for these encoders.
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community [36]. These encoders are based on stable and open standards and as a consequence
their examination is more probable to give reusable modelling results.

For all the examined encoders, compression is achieved by removing the spatial (intraframe)
and the temporal (interframe) redundancy. In intraframe coding, a transform coding technique
is applied at the image blocks, while in interframe coding, a temporal prediction is performed
using motion compensation or another technique. Then, the difference or residual quantity
is transform coded. Here, we must note that the ViC H.261 encoder [13], [16] performs only
intraframe coding oppositely to the H.261 encoders of Vpoint, eConf and EnVision, where
blocks are inter or intra coded. The above encoding variations influence the video bit rate
performance of the encoders and as a consequence the statistical characteristics of the generated
traffic traces. It is a matter of question, consequently, if the different encoders’ traffic can be
captured by a common traffic model.

At this point, we may discuss about the basic functionality of the examined video systems
which is a fundamental factor in the derived statistical features of the encoded traffic and a basic
reason of the experiments’ philosophy we followed. The rate control parameter (bandwidth and
frame rate) sets a traffic policy, i.e. an upper bound on the encoded traffic according to the
user’s preference (obviously depending on his/her physical link). An encoder’s conformation
to the rate control of the system is commonly performed by reducing the video quality (and
consequently the frame size quantity) through the dynamic modulation of the quantization
level. In the case of ViC, a simpler method is applied. The video quality remains invariant
and a frame rate reduction is performed when the exhibited video bit rate tends to overcome
the bandwidth bound. In fact, in ViC, the video quality of a specific encoder is a parameter
determined a priori by the user. In the case of Vpoint, eConf and EnVision, the frame rate
remains invariant and a video quality reduction is performed when the exhibited video bit rate
tends to overcome the bandwidth bound. This threshold can be set through the network setting
of each client. Moreover, Vpoint utilizes adaptive bandwidth adjustment (ABA). ABA works
primarily by monitoring packet loss. If the endpoint detects that packet loss exceeds a pre-
defined threshold, it will automatically drop to a lower conference data rate while instructing
the other conference participant’s endpoint to do the same.

Two experimental cases were examined in the current study as presented in Table 1 (TKN
traces are also included). Case 1 included experiments where the terminal clients were op-
erating in unconstrained mode while Case 2 covered constrained-mode trials. In both Cases,
two ”talking-heads” raw-format video contents were imported in the video systems through a
Virtual Camera tool [37] and then peer-to-peer sessions of at least half an hour were employed
in order to ensure a satisfactory trace length for statistical analysis. These contents were offline
produced by a typical webcam in uncompressed RGB-24 format: one with mild movement and
no abrupt scene changes, ”listener”, (to be referred as VC-L) and one with higher motion activ-
ities and occasional zoom/span, ”talker” (VC-H). The video size was QCIF (176x144) in both
Cases and all scenarios (VC-H and VC-L). In Case 1, no constraint was imposed either from a
gatekeeper or from the software itself. The target video bit rates that were imposed in Case 2
are shown in Table 1. In each case, the UDP packets were captured by a network sniffer and
the collected data were further post-processed at the frame level3 by tracing a common packet
timestamp. The produced frame-size sequences were used for further statistical analysis.

Specific parameters shown in Table 1, for the VC-H and VC-L traces, depend on the particu-
lar coding scheme, the nature of the moving scene, and the confidence of the measured statistics.
Moreover, traffic traces available in literature where used for further validation. Specifically,
the traces used were: “office cam” and “lecture room cam” (from the TKN library). These

3It is important to note, here, that analysis at the MacroBlock (MB), as in [20], level has been examined
and found to provide only a typical smoothing in the sample data. We believe that the analysis at the frame
level is simpler and offers a realistic view of the traffic.
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traces were offline H.263 encoded in a constrained and unconstrained (no target bit rate was
set during offline encoding) mode.

Some primary conclusions, as supported by the experiments’ results (see Table 1), arise
concerning the statistical trends of the encoders’ traffic patterns. Specifically, H.263+ produces
lower video bit rate than H.263 and H.261 do. This was expected, since the earlier encoder
versions have improved compression algorithms than the prior ones (always with respect to the
rate produced). Finally, for all the encoders, the use of the VC-H content led to higher rate
results (as reasonable). Similar results were observed for the mean frame size and variance
quantities. In all cases, the variance quantities of the VC-H content were higher than that of
VC-L with the exception of the ViC H.263+ encoder (Case 1 – Traces 5,6) where the opposite
phenomenon appeared.

The encoders used for the production of the TKN traces tend to adjust their quality in
a ”greedy” manner so as to use up as much of the allowed bandwidth as possible. At this
point, we must note that Trace 4 of Case 2 is semi-constrained (i.e. the client did not always
need the available network bandwidth). However, this particular case can be covered by the
”worst-case” Case 2 – Trace 3, where the target rate is reached (full-constrained traffic).

Taking into account the above context, the following questions naturally arise:

• What is the impact of the encoders’ differences on the generated videoconference traffic
trends?

• Can a common model capture both types of traffic, unconstrained and constrained?

• Are the traffic trends invariant of the constraint rate selected?

• How does the motion of the content influence the generated traffic - for each encoder -
and the parameters of the proposed traffic model?

• Can a common traffic model be applied for all the above cases?

The above questions pose the research subject which is thoroughly examined in the context
to follow. Their answers will be given along with the respective analysis.

2 Traffic analysis and modelling assessment

The measured traffic analysis for all experimental sets confirms the general body of knowledge
that literature has formed concerning videoconference traffic. Traffic analysis was employed for
all experimental cases. More explicitly, in all cases, the frame-size sequence can be represented
as a stationary stochastic process, with a frequency histogram of an approximately bell-shaped
(more narrow in the case of H.263 and H263+ encoding) Probability Distribution Function
(PDF) form, see figures 1((a)-(c)), 2((a)-(c)) more complex in the TKN traces as their content
(office and lecture cam) probably contained more scene changes than our contents VC-L and
VC-H. Examining more thoroughly the sample histograms, we noted that the smoothed frame-
size frequency histograms of the H.261 encoder have an almost similar bell-shape (see figures
1((a),(b)) and figures 2((a),(b))) while a more narrow shape appears in the H.263 and H.263+
histograms (figures 1(c) and 2(c). The VC-H frequency frame-size histograms appeared to be
more symmetrically shaped than the correspondent VC-L histograms. This is reasonable as
the rate of the H.26x encoders depends on the activity of the scene, increasing during active
motion (VC-H) and decreasing during inactive periods (VC-L).

Furthermore, the AutoCorrelation Function (ACF) of the unconstrained traffic (for all traces
of Case 1) appeared to be strongly correlated in the first 100 lags (short-term) and slowly de-
caying to values near zero (see some indicative figures 3((a)-(c)) of the traces of Case 1). On the
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contrary, the ACFs of the constrained traffic (Case 2) decayed very quickly to zero denoting the
lack of short-term correlation (see figures 3((d)-(f)). This conclusion is very critical in queueing
as the short-term correlation parameter has been found to affect strongly buffer occupancy
and overflow probabilities for videoconference traffic. In fact, to verify this assumption, we
measured the buffer occupancy of the constrained traces in queueing experiments of different
traffic intensities. Buffering was found to be very small at a percentage not affecting queueing.
On this basis, it is evident, that for the purpose of modelling of the two types of traffic not a
common model can be applied. More explicitly, a correlated model is needed for the case of
unconstrained traffic while a simpler non-correlated model is enough for constrained traffic.

The DAR model, proposed in [7], has an exponentially matching autocorrelation and so
matches the autocorrelation of the data over approximately hundred frame lags. This match is
more than enough for videoconference traffic engineering. Consequently, this model is a proper
solution for the treatment of unconstrained traffic. When using the DAR model, it is sufficient
to know the mean, variance and autocorrelation decay rate of the source, for admission control
and traffic forecasts. A negative feature of the DAR model is that it exhibits ”flat spots’” which
make its sample paths ”look” different from those of the data when comparisons are made
for a single source (for multiplexed data sources they are indistinguishable). Though these
flat spots may not affect traffic engineering, there is another model which is more specialized
for modelling accurately the short-term fluctuations of single teleconference sources, namely,
GBAR. However, the GBAR model cannot be applied in our study as it is exclusively based
on the Gamma density (except from the cases where the Gamma density is proposed).

For the constrained traffic traces, a simple random number generator based on the fit of
the sample frame-size histogram can be directly applied. The DAR model with the autocor-
relation decay rate value equal to zero can also be a solution. This feature turns constrained
videoconference traffic more amenable to traffic modelling than its counterpart unconstrained
as only two parameters are needed, the mean and the variance of the sample.

The rest of the paper discusses methods for correctly matching the parameters of the mod-
elling components to the data and for combining these components into the DAR model (to be
analytical treated via the C-DAR and the fluid-flow method for unconstrained traffic).

2.1 Fitting of the frame-size frequency histograms of the traces

A variety of distributions was tested for fitting the sample frame-size frequency histograms.
These are the following: Gamma, Inverse Gamma (or Pearson V), Loglogistic, Extreme Value,
Inverse Gauss, Weibull, Exponential, Lognormal. The most dominant ones found to be the first
three. Even though the Inverse Gauss density performed similarly to the Gamma distribution,
it is not included in the analysis to follow, as the Gamma distribution is more popular and
simpler. Finally, the Extreme Value distribution performed, in total, worse than the other ones.

For the purpose of fitting the selected distributions’ density to the sample frame-size se-
quence histogram, although various full histogram-based methods (e.g. [22]) have been tried
in literature, as well as maximum likelihood estimations (MLE), we followed the approach of
the simple moments matching method. This method has the positive feature of requiring only
the sample mean frame size and variance quantities and not full histogram information. Thus,
taking into account that the sequence is stationary - and as a result the mean and the vari-
ance values are almost the same for all the sample windows - it is evident that only a part of
the sequence is needed to calculate the corresponding density parameters. Furthermore, this
method has the feature of capturing accurately the sample mean video bit rate, a property
that is not ensured in the case of MLE or histogram-based models. However, in the cases of
not satisfactory fit by none of the examined distributions (as in the case of the TKN traces) a
histogram-based method can be applied as an unconvential fitting method.
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If m the mean, v the variance of the sample sequence s and ml the mean and vl the
variance of the logarithm of the sample s, then the distribution functions and the corresponding
parameters derived from the moments matching method are given by the following equations,
for each distribution correspondingly, Eq. (1): Gamma, Eq. (2): Inverse Gamma, Eq. (3):
Loglogistic.

f(x) =
1

βΓ(α)

(
x

β

)α−1

e−
x
β (1)

where α = m2/v, β = v/m and Γ(α) =
∫∞

0
uα−1e−udu

f(x) =
1

βΓ(α)
· e−

β
x(

x
β

)(a+1)
(2)

where a = m2/v + 2 and β = m (m2/v + 1)

f(z) =
ez(1−σ)−ml

(1 + ez)2σ
(3)

where z = (ln(x)−ml)/σ, ml = E[ln(s)] and σ =
√

3E[ln(s)]/π
Given the dominance of the above distributions, modelling analysis and evaluation will be

presented for the above three densities. The numerical results (densities’ parameters) from the
application of the above parameters-matching methods appear in Table 2. At this point, we
must note that the Loglogistic density (3), although it provides better fits in the H.263+ cases
(as will be commented upon later) exhibits mean and variance values that slightly deviate from
the sample counterpart values. However, this is negligible with respect to queuing as concluded
by the fluid-flow simulations presented in Section 3.

The modelling evaluation of the above methods has been performed from the point of queue-
ing. As a consequence, we thoroughly examined fits of cumulative distributions. This was done
as follows: we plotted the sample quantiles from the sample cumulative frequency histogram
and the model quantiles from the cumulative density of the corresponding distribution. The
Q-Q plot of this method refers to cumulative distributions (probabilities of not exceeding a
threshold).

Figures 1((a)-(c)) and figures 2((a)-(c)) present Q-Q plots for all traces of both Case 1 and
2 respectively. The results suggest that for fitting videoconference data, the coding algorithm
used should be taken into consideration. There seems to be a relationship between the coding
algorithms and the characteristics of the generated traffic. For instance, for H.261, in most
cases, the dominant distribution is Gamma (1), as can be verified from the Q-Q plots depicted
in figures 1((a),(b)), and for H.263 and H.263+, the Loglogistic density (3) has a more ”stable”
performance than the other two (Q-Q plots shown in figures 1(c) and 2(c). The Inverse Gamma
density (2) seems to be suitable for H.263 traffic (see figure 1(c)) although it was outperformed
by the Loglogistic density in some cases. However, as will be commented upon later, it did not
provide a solution in all cases of constrained traffic.

We must note that in Case 2, where a constrain was imposed, the moments matching method
for calculating the distribution’s parameters did not always provide a good fit, and performed as
shown in figures 2((a)-(c)) (Inverse Gamma and Loglogistic are depicted. The Gamma density
provided similar fit). To provide an acceptable fit, a histogram-based method proposed for
H.261 encoded traffic in [22], known as C-LVMAX, was used. This method relates the peak of
the histogram’s convolution to the location at which the Gamma density achieves its maximum
and to the value of this maximum. The values of the shape and scale parameters of the Gamma
density are derived from: a = (2πx2

maxf
2
max + 1)/2 and b = 1/(2πxmaxf

2
max) where fmax is the

unique maximum of the histogram’s convolution density at xmax. Numerical values for this fit
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appear also in Table 2 (for Case 2 only). Figures 2((a)-(c)) show how the three distributions
fit the empirical data using the method of moments (Inverse Gamma, Loglogistic) and the
C-LVMAX method (Gamma C-LVMAX). The Inverse Gamma density could not be calculated
for all the constrained traces (Case 2 – Traces 5,6,8,9), due to processing limitations (for large

a, b parameters the factor
(

1
β

)(a+1)

in Eq. (2) is very small, near zero, and consequently its

inverse quantity could not be calculated4).
Summing up the above analysis, it is evident that the Gamma density is better for H.261 un-

constrained traffic, the Loglogistic for unconstrained H.263, H.263+ traffic and the C-LVMAX
method for all cases of constrained traffic. However, if a generic and simple model needed to
be applied for all cases then the most dominant would be the Loglogistic density.

2.2 Calculation of the autocorrelation decay rate of the frame-size
sequences

At this point, we may discuss about the calculation of the autocorrelation decay rate of the
frame-size sequence of the unconstrained traces (as denoted in the previous sections, constrained
traffic appeared to be uncorrelated and as a result the decay rate of its autocorrelation func-
tion can be set to zero). From the figures 3((a)-(d)), it is observed that the ACF graphs of
unconstrained traffic exhibit a reduced decay rate beyond the initial lags. It is evident that
unconstrained video sources have very high short term correlation, feature which cannot be
ignored for traffic engineering purposes. This is a behaviour also noted in earlier studies [6].

To fit the sample ACF, we applied the model proposed in [22] that is based on a compound
exponential fit. This model fits the autocorrelation function with a function equal to a weighted
sum of two geometric terms:

ρk = wλk1 + (1− w)λk2 (4)

where λ1, λ2 are the decay rates with the property: |λ2| < |λ1| < 1. This method was tested
with a least squares fit to the autocorrelation samples for the first 100, since the autocorrelation
decays exponentially up to a lag of 100 frames (short-term behavior) or so and then decays
less slowly (long-term behavior). This match is more than enough for traffic engineering, as
also noted in [28]. What is notable is that using this model, the autocorrelation parameter ρ is
chosen not at lag−1, as in DAR model. For each encoder (in Case 1), the parameter numerical
values of the above fit appear in Table 2.

In the section to follow, the discussed modelling components are combined into complete
traffic models with the C-DAR method. Furthermore, the different modelling parameters are
validated comparing sample-based against model-based fluid-flow simulations in a single-server
queueing system. This analysis is performed only for unconstrained traffic as for constrained
traffic, the Q-Q plots are enough for modelling validation purposes.

2.3 Queueing analysis via the C-DAR model and the fluid-flow method
– modelling validation

The C-DAR model that was proposed and used analytically in [19] can be directly applied
for full modelling and analytical treatment of H.26x unconstrained (correlated) traffic over
IP networks. This model is defined as a continuous-time discrete-state Markov chain with a
transition rate matrix Q of the form:

Q = fc(P − I) (5)

4However, the values of the parameters of the Inverse Gamma density for Case 2 – Traces 5,6,8,9 are given
in Table 2.
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where fc =
ln ρ

ρ− 1
f , P = ρI + (1− ρ)A from the DAR(1) model [7] with ρ the autocorrelation

decay rate derived from Eq.(4), f is the frame rate of the videoconference traffic,I is the identity
matrix and A is a rank-one stochastic matrix with all rows equal to the probabilities resulting
from the fit of the selected distribution. The C-DAR model demands the representation of the
frame-size sequence with a constant number of states, whose probabilities values will fill the
rows of the stochastic matrix A. These states can be easily chosen by dividing the interval
between the maximum and the minimum frame size of the sequence into M frame-size states.
So, if xmin is the minimum and xmax the maximum frame-size value then a reasonable state
step n is n = (xmax − xmin)/M , with n rounded to the nearest integer. The rate of each state
can be easily calculated by the relative mean rate of a histogram window, as follows: if Pi is
the probability mass of frame size Si (derived from the corresponding density) then the rate
value of the state value is equal to f

∑n
i=1 PiSi/

∑n
i=1 Pi. The value of the autocorrelation decay

rate ρ should be chosen equal to the parameter λ1 of the model used to fit the ACF in Eq.(4)
(see Table 2) and the elements for the rows of table A should be determined through the fit
produced by the PDF models (with parameters chosen from Table 2).

Following the approach in [19], the C-DAR model - as a continuous-time Markov chain
model - is suitable for theoretical analysis using the fluid flow method (see also [3],[29],[30].
The above scheme is a very fast and simple queueing analysis method for VBR video traffic.
Dr K. Kontovasilis provided us with a Matlab implementation of the above scheme, namely,
”genflow”. The “genflow” program takes as input the characteristics of N statistically identical
fluid-flow Markov-Modulated sources (with global matrices Qg = Q⊗Q⊗ ...⊗Q from Eq.(5)

and state space compressed to

(
N + M

M

)
states due to the statistical identical feature of the

superposed streams) and solve the congestion problem of those N sources being statistically
multiplexed over a multiplexer with infinite buffering capabilities. This program has been
used in other studies too (see [31]). This method is analyzed as follows: consider a single
server queueing system fed by videoconference traffic r(t) ≥ 0 as a Markov modulated rate
process according to the C-DAR model with a finite number of M states and transition rate
matrix Qg. More explicitly, in each state i = 1 . . .m, we correspond a video rate ri. If Π
is the corresponding steady state probability vector, then the mean input rate r is calculated
as follows: r =

∑M
i=1 Πiri. The mean rate of the calculated rate vector captures always the

mean rate of the sample (with a slight deviation in the case of the Loglogistic density). Let
R = diag{r1 . . . rM} and C be the constant server capacity. When r(t) > C, the input traffic
cannot be served entirely and its excess part is stored into a buffer in order to be served later.
Let {X(t), t ≥ 0} be the stochastic process that represents the buffer occupancy. It is noted
that the traffic intensity of the system is equal to r/C. Define the steady state distribution
Fi(x) as the joint probability that the buffer occupancy is less than or equal to x when in the
i state of the source model. Let: F (x) = [F1(x), F2(x), . . . , FM(x)]T . Then from [29],[30], we
have the differential equation:

dF (x)

dx
D = F (x)Qg (6)

where D = R − CI. Given the infinite buffer assumption, we determine a buffer threshold B
and define the buffer overflow probability as follows:

Poverflow = 1− F (B)1 (7)

where 1 = (1, ..., 1)T . From Eq. (6) and the boundary conditions for the infinite buffer size
approach in [3],[29],[30], the following relation holds:

F (x) =
M∑
i=1

αie
zixφi (8)
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where the coefficients ai must be calculated from the boundary conditions and z and φ are,
correspondingly, the eigenvalue and the left eigenvector of the matrix QgD

−1. Given the infinite
buffer assumption, the solution of Eq. (8) is given as follows:

F (x) = Π +
∑
i∈So

aie
zixφi (9)

where So
∧
= {j|rj > C}, zi < 0 and z1 = 0.

Using the above method (with the assumption of a finite buffer), the authors in [19], proved
experimentally (comparing the analytical model versus trace-driven simulation) that the C-
DAR model provides accurate queueing results (mean cell loss rate, mean queue length) and
therefore is suitable for theoretical analysis of videoconference traffic. To validate the modelling
proposals of the previous sections, we present experimental queueing results comparing the
complementary distribution of the buffer overflow given by the C-DAR Markov chain as derived
from the calculation of Eq. (7) and (9) for any value of buffer threshold B versus the one given
by a discrete-event simulation [17] using the actual traces (trace-driven simulation e.g. [21]).
For a variety of Case 1 traces5, the complementary buffer size densities from the results of the
fluid-flow method for all the examined distribution models (for different values of multiplexed
sources N) and the corresponding sample (derived from the discrete simulation of the trace
being multiplexed6 and frame interarrival times equal to 1/f) are plotted together (see figures
4((a)-(n)). The probabilities values are always assigned at the logarithmic scale. The traffic
intensity was chosen equal to 0.857, the autocorrelation decay rate properly chosen from Table
2 and the number of states of the Markov chain M equal to 5 (increasing the number of states
higher than five led to identical results). The comparison between the simulation and the
analytical results gives a clear indication of the queueing performance of the proposed models
for unconstrained videoconference traffic. As can be seen there is quite good agreement between
all curves, apart from the fact that the curve deviates from those derived from by analysis from
small buffer sizes. This is physical as with the fluid-flow method the discreteness of the buffer
occupancy is neglected. Moreover, in all plots where more than one sources were multiplexed
the multiplexing gain property led to more conservative results for the models (asymptotically
tight though). More explicitly, it is concluded that, in most cases of single source service (e.g.
see couples of figures (1(a), 4(a)) - (1(c), 4(d))) the models that exhibited the best fits in Q-
Q plots provided closely accurate queueing results. This fact constitutes the selection of the
ACF decay rate at the first 100 lags valid for unconstrained videoconference traffic engineering
purposes. However, there are some obvious deviations from the above conclusion where the
sample results are roughly fitted by the models. This phenomenon, which is less intense in
the case of multiplexing of the same sources due to the multiplexing gain property, claims the
existence of notable long-term trends in the ACFs of the respective traces (Case 1 – Traces 9,
11, 12). It is evident that in these particular cases, more than 100 lags (this was also remarked
in [22] where the authors proposed a fit in the first 500 lags of the ACF) are needed to capture
the strong correlation structure of the traffic. This can be also verified by the bad queueing
performance of the Loglogistic density, despite its better fitting behavior in the corresponding
Q-Q plots. Though for the majority of the examined cases, where a 100-lag fit was found
to be accurate, a network administrator could choose a fit at 500 lags in order to ensure the
conservativeness of single-source queueing results. For multiplexing this is already ensured.

5Queueing analysis for VC-H and VC-L traces of the same encoder and video system was found to be similar.
Consequently, for brevity reasons, only the ”worst-case” VC-H traces are examined.

6In trace-driven multiplexing, the first frame occurrence of each source was randomized over the interval of
a frame and then the source kept its individual frame synchronization.

7If the models retain close to the sample at high traffic intensities, their applicability is ensured for lower
values of the traffic intensities (as declared in [2]). This property, though, was tested and expected results were
found.
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Regarding the constrained (uncorrelated) traffic, it is repeated that there is no need to
perform simulations, since the buffering is done inside the encoder. The traffic can be captured
by the Gamma density calculated via the C-LVMAX method, as can be validated from the
Q-Q plots shown in figures 2((a)-(c)).

3 Conclusions

The current study is a contribution of modelling and simulation results for a variety of exist-
ing videoconference encoders for talking heads communication. An extensive analysis of the
measured data, a careful but simple modelling of the frame-size sequences and the extensive
evaluation of the modelling components, led us to the general conclusion that the traffic can be
distinguished into two categories: unconstrained and constrained. In the unconstrained traffic,
strong correlations between successive video frames can be found (and a large buffer has to be
used for better performance). On the other hand, where bandwidth constraints are imposed
during the encoding process, the generated traffic is uncorrelated.

We used the measured data to develop statistical traffic models for unconstrained and
constrained traffic. These models were further validated with different videoconference contents
(low motion and high motion, TKN library). Different statistical models for fitting the empirical
distribution (method of moments and C-LVMAX method) were examined.

For fitting the videoconference data, the coding algorithm used should be taken into consid-
eration. There seems to be a relationship between the coding algorithms and the characteristics
of the generated traffic. For instance, for H261, in most cases, the dominant distribution is
Gamma, and for H263 and H263+, Loglogistic has a more ”stable” performance. Moreover,
the Inverse Gamma density could not be calculated for all constrained traces, due to processing
limitations. This fact constitutes the Inverse Gamma density as impractical as a generic model
for H.263 traffic.

Regarding the unconstrained traces, a careful but simple generalization of the DAR model
can simulate conservatively and steadily the measured videoconference data. The model was
further verified using the Continuous version of the DAR model, namely, C-DAR model (analyt-
ical solution). For the constrained traces, the traffic can be captured by the C-LVMAX method
via a random number generator, producing frames at a time interval equal to the sample. On
the other hand, if a moments matching method needed to be applied, then the Loglogistic
density is a direct solution. Another interesting assumption is that the traffic trends remain
invariant when a different network constrained is selected, as evident from the TKN traces. So,
the proposed model for the constrained traffic can be applied without taking into account the
specific network constraint.

It is evident that if a generic and simple model needed to be applied for all cases of video-
conference traffic then the most dominant would be the DAR model based on the fit of the
Loglogistic density with a decay rate properly assigned to the fit of the sample ACF at the first
100 lags (although a 500 lags fit would lead to a more conservative queueing performance), for
the case of unconstrained traffic, and to zero for the constrained traffic.

Future work includes the integration of the proposed models in dynamic traffic policy
schemes in real diffserv IP environments. Careful analysis and modelling of cases of semi-
constrained traffic, although their counterpart ”worst-case” full-constrained cases cover their
traffic trends, is of particular interest, too.
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Figure 1: Frame-size histograms vs moment fit and the respective Q-Q Plots for unconstrained
traces
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Figure 2: Frame-size histograms vs moment and C-LVMAX fit and respective Q-Q Plots for
constrained traces
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Figure 3: Autocorrelation Graphs for unconstrained and constrained traces
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Figure 4: Complementary buffer overflow density plots of model vs sample
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