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We propose methods for selecting the modelling parameters of H.263-quantized video traffic under two different encoding
scenarios. For videos encoded with a constant quantization step (unconstrained), we conclude that a two-parameter power relation
holds between the exhibited video bit rate and the quantizer value and that the autocorrelation decay rate remains constant for
all cases. On the basis of these results, we propose a generic method for estimating the modelling parameters of unconstrained
traffic by means of measuring the statistics of the single “raw” video trace. For rate-controlled video (constrained), we propose an
approximate method based on the adjustment of the “shape” parameter of the counterpart—with respect to rate—unconstrained
video trace. The convergence of the constructed models is assessed via q-q plots and queuing simulations. On the assumption
that the popular MPEG-4 encoders like XVID, DIVX usually employ identical H.263 quantization and rate control schemes, it is
expected that the results of this paper also hold for the MPEG-4 part 2 family.

1. Introduction

With the rapid spread of multimedia applications and the
great progress of video streaming technologies such as the
MPEG-4 and H.26x standards, network-based multimedia
applications, for example, IPTV, VoD, and videoconference,
have become increasingly popular services. Video traffic,
which is going to be streamed by these services, is expected to
account for large portions of the multimedia traffic in future
heterogeneous networks (wireline, wireless, and satellite).
Despite the high data rates of the contemporary network
settings, there is still a need for quality assurance for the
above services especially when a real-time session has to
be established (e.g., videoconference or video streaming
without buffering options, e-collaboration, remote control,
etc.). Since such services rely on the exchange of bandwidth
demanding video information, with the MPEG-4 and H.263
encoders being the most commonly used standards for the
moment, extensive deployment of these services calls for
careful modelling of the associated network traffic, so that
the appropriate amount of resources may be anticipated by
the network.The video trafficmodels for these networksmust

cover a wide range of traffic types and characteristics because
the type of the terminals will range from a single home
or mobile user (low video bit rate), where rate-constrained
(or rate-controlled) video traffic is mainly produced, to a
terminal connected to a backbone network (high video bit
rate), where the traffic is presented to be out of the loop, that
is, the encoder is not forced to conform to a certain video
bit rate. Furthermore, successful video traffic modelling can
lead to a more economical network usage (improved traffic
policing schemes), leading to lower communication costs and
amore affordable and higher quality service to the end-users.

Partly due to the above reasons, the modelling and
performance evaluation of video traffic have been extensively
studied in the literature, and a wide range of modelling
methods exist.The results of relevant early studies [1–10] con-
cerning the statistical analysis of variable bit rate videocon-
ference streams being multiplexed in ATM and IP networks
indicate that the histogram of the videoconference frame-
size sequence exhibits an asymmetric bell shape and that the
autocorrelation function decays approximately exponentially
to zero. An important body of knowledge, in videoconference
traffic modelling, is the approach in [5] where the DAR(1)
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[11] model was proposed. More explicitly, in this study, the
authors noted that AR models of at least order two are
required for a satisfactory modelling of the examined H.261-
encoded traffic patterns. However, in the same study, the
authors observed that a simple DAR(1) model, based on a
discrete-time, discrete state Markov Chain performs better—
with respect to queueing—than a simple AR(2) model. The
results of this study are further verified by similar studies
of videoconference traffic modelling and VBR video perfor-
mance and simulation [6, 12]. The above studies certainly
constitute a valuable body of knowledge. However, most of
the above studies examine video traffic traces compressed by
encoders like MPEG-2, MPEG-4, H.261, and H.263 that were
operating in an unconstrainedmode and as a result produced
traffic with similar characteristics. As denoted in [13], for
active sequences, that is, movies, which is the subject of the
current study, the use of a singlemodel, for example, DAR [5],
based on a fewmeaningful parameters and applicable to large
number of sequences does not appear to be possible. On this
basis, complicated scene-based models have been proposed.
Furthermore, most of the above studies examined MPEG
encoding schemes which were implemented with B-frames
encoding. However, for real-time streaming applications,
which is the interest of this paper, only I- andP-frames usually
appear in the generated traffic patterns.

Our modelling approach, in this study, is based on the
recommendations towards a good traffic model that were
proposed in [14]. According to them, a model must be
realistic, reusable, and computationally efficient. In order not
to decline from the above requirements, we used realistic
experimental data, movies, and concerts and worked on
the modelling parameters of well-established and simple
models proposed in the literature.More explicitly, we provide
methods for calculating the parameters of the simple DAR
model. Taking into account the reasonable assumption that
the statistical characteristics of the same video compressed
with different encoding schemes are similar, we use the
modelling parameters of a raw unconstrained offline video
trace as a basis and adjust it to the traffic traces under different
encoding sets, that is, different quantization levels, mean
video bit rate. The q-q plots of the sample versus the model
data show that the adjusted models provide accurate fits.

The rest of the paper is structured as follows: Section 2
presents the state of the art in H.263-quantized video
compression and traffic modelling. Section 3 discusses the
measurement procedure and the statistical analysis of H.263-
quantized video traffic, unconstrained and constrained. Sec-
tion 4 analyses the appropriate methods for selecting the
parameters of the autoregressive video trafficmodels. Finally,
Section 5 culminates with conclusions and pointers to further
research.

2. State of the ART: Video Traffic Modelling

Today, a large number of video systems exist using practical
implementations of the MPEG-4-ISO/IEC open standard for
video encoding developed byMPEG (MovingPicture Experts
Group) [15]. The MPEG-4 standard is characterized by a

small output video file size and quite good picture quality
even when a relatively low bit rate is used. It is coded with
XviD, DivX, 3ivx, Nero Digital, and other video codecs.
Moreover the H.263 (H.263+ included) codec [16] is a widely
adopted standard for videoconference communication as
well as for video streaming via mp4 encapsulation. Both of
the above standards use the H.263 quantization scheme and
employ the same rate control algorithms. In addition, they are
capable of working in both unconstrained and constrained
modes of operation. In unconstrained VBR mode, the video
system operates independently of the network (i.e., using a
constant quantization scale throughout transmission). This
type of quantization/compression is usually applied in high
capacity networks. In the constrained mode, the encoder has
knowledge of the networking constraints (either imposed
offline by the user) and modulate its output in order to
achieve the maximum video quality for the given content (by
changing the quantization step). This is the typical encoding
scenario in low capacity networks where a QoS algorithm has
to be implemented.

MPEG-4-H.263-quantized videoconference traffic,
thanks to its widely used compression algorithms which
result in lower bandwidth requirements, accounts for large
portions of the multimedia traffic in today’s heterogeneous
networks (wireline, wireless, and satellite), with the ADSL
network being the most notable one. Under the above
expectation, it is evident that a statistical model for this
type of traffic would be very useful to predict network
usage and estimate resources. For this reason, a lot of traffic
models exist mainly as autoregressive (see [17] for a review of
such models). Newer studies of video traffic modelling, for
example, [18–20] reinforce the general conclusions obtained
by the above earlier studies by evaluating and extending
the existing models and also proposing new methods for
successful and accurate modelling. An extensive public
available library of frame-size traces of unconstrained and
constrained MPEG-4, H.263, and H.263+ off-line encoded
video was presented in [21] along with a detailed statistical
analysis of the generated traces. In the same study, the use
of movies, as visual content, led to frames generation with a
Gamma-like frame-size sequence histogram (more complex
when a target rate was imposed) and an autocorrelation
function that quickly decayed to zero (a traffic model was
not proposed though in the certain study). Of particular
relevance to our work is the approach in [22], where an
extensive study on multipoint videoconference traffic
(H.261-encoded) modelling techniques was presented. In
this study, the authors discussed methods for correctly
matching the parameters of the modelling components to
the measured H.261-encoded data derived from realistic
multipoint conferences (in “continuous presence” mode). In
[23, 24], the authors propose an accurate DAR model based
on the Pearson V distribution which on the basis of their
statistical tests provides the best fit. Moreover, in [25], the
authors use wavelets to model the distribution of I-frames
and a simple time-domain model for P/B frames and present
a novel method to capture the correlation properties of
vbr traffic using group of pictures analysis. Finally, in [26],
traffic modeling of M2M mobile video services is studied
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via several distributions with heavy tail. According to the
authors results, the Lognormal distribution was able to
represent more accurately the video traffic.

Aiming at a realistic, reusable, and simple video traffic
model, accurate enough for queueing analysis and network
estimation, this study discusses methods for calculating the
appropriate model parameters from the observed traffic
data and proposes methods for correctly estimating the
parameters of the DAR model on different compression
and network scenarios. This is addressed by improving
the models presented in [22] by means of importing the
compression parameters, that is, the quantizer value for the
case of unconstrained traffic and the mean video bit rate for
constrained traffic.

3. Video Traces: Measurement and Processing
of Video Data

The data we are modelling were gathered off-line using the
ffmpeg libavcodec suite [27]. The off-line mode assured that
no packet losses exist during the trace collection process and
that the traffic model will always represent the best quality
of the encoded video. On this basis, it is stressed that, in
the current study, there was no point in investigating an
online environment. It is evident that the proposed model
is applicable in any network environment as it represents
source-faithful video traffic encoded during UDP commu-
nication of video terminals. Movies scenes of at least 20
minutes were selected among popular commercial DVDs,
for example, Aviator, Jethro Tull concert, Lord of War, and
were encoded (in fact transcoded from the common MPEG-
2 DVD format) using the libavcodec H.263 codec. We used
as raw video some popular movies scenes from the DVD-
Video movies Aviator (VTS, 22min), Jethro Tull concert
(VTS, 30,55min), Lord ofWar (VTS, 15,20min), andMillion
Dollar Hotel (VTS, 27,05min). All video files were stored in
a common DVD-Video format MPEG-2 at a high resolution
720 × 576, 25 frames/sec with average rate (approximately
for all video files) of 5500Kbps. There were two encoding
scenarios: the first one was designed to contribute results
for traffic which is quantized with a constant quantization
scale (step) and as a result is presented to be out of the
loop or unconstrained, in a sense that no rate limitations are
imposed. The second one gave results for the counterpart in
the loop cases; that is, no quantization scale was selected, and
instead a rate control was imposed, at a certain target rate.
An encoder’s conformation to the rate control of the system
is commonly performed by reducing the video quality (and
consequently the frame-size quantity) through the dynamic
modulation of the quantization step. These operation modes
were presented in [13] where Variable Bit Rate (VBR) video is
thoroughly examined and categorized according to encoding
and networking parameters (From now on, U-VBRwill stand
for unconstrained video and C-VBR for constrained video.).

In both scenarios, the following parameters of the ffmpeg
command were set: -vcodec: h263, -r: 25, -g: 250, and -s: qcif
where -vcodec is the encoder used, -r is the video frame rate,
-g is the number of P-frames before and I-frame appearing

and-s is the video size. B-frame encoding was not employed
as it is not recommended for real-time streaming. As a
consequence, the resulting video sequence is consisted of I-
and P-frames. An .mp4 encapsulation enables this type of
traffic to be streamed at an RTP level via a common streaming
server, for example, the Darwin Streaming Server [28].
However, in this paper, we examined the video source in an
off-line mode, and no network feedbacks were included, for
example, F-VBR traffic as explained in [13]. To implement the
above encoding scenarioswe added an appropriate parameter
correspondingly, that is, -qscale set from 2 to 15 for U-VBR
traffic and -b set to a certain rate (100, 200, and 400 kbps) for
C-VBR traffic.

In all cases the video statistics at a frame level were
collected using the -vstatsfile parameter and were processed
for further analysis. We must note here, that I-frames are
excluded from the analysis to follow as it was found that
they have a minimal impact with respect to queueing per-
formance. However, a uniform I-frame generator could be
also integrated so as to ensure the conservativeness of the
proposed model.

4. Estimation of Modelling Parameters

4.1. The Discrete Autoregressive Model. The DAR model that
was proposed and used analytically in [5] can be directly
applied for full modelling and analytical treatment of video
traffic presented in this context. This model is defined as a
discrete state Markov chain with a transition rate matrix 𝑃 of
the form

𝑃 = 𝜌𝐼 + (1 − 𝜌)𝐴, (1)

where 𝜌 is the autocorrelation decay rate of the 𝑛 length
frame-size sequence 𝑋

𝑛
(always of type 𝑝), 𝐼 is the identity

matrix, and 𝐴 is a rank-one stochastic matrix with all
rows equal to the probabilities resulting from the fit of the
frequency histogram of 𝑋

𝑛
. The DAR model demands the

representation of𝑋
𝑛
with a constant number of states, whose

probabilities values will fill the rows of the stochastic matrix
𝐴. These states can be easily chosen by dividing the interval
between the maximum and the minimum frame sizes of
the sequence into 𝑀 frame-size states. So, if 𝑋min is the
minimum and 𝑋max the maximum frame-size value, then a
reasonable state step 𝑠 is 𝑠 = (𝑋max−𝑋min)/𝑀, with 𝑠 rounded
to the nearest integer. The rate of each state can be easily
calculated by the relative mean rate of a histogramwindow as
follows: if P

𝑖
is the probability mass of frame size𝑋

𝑖
(derived

from the corresponding density), then the rate value of the
state value is equal to 𝑓∑

𝑛

𝑖=1
P
𝑖
𝑋
𝑖
/∑
𝑛

𝑖=1
P
𝑖
, with 𝑓 being the

frame rate of the traffic.
The DAR model has an exponentially matching autocor-

relation and so matches the autocorrelation of the data over
approximately hundred frame lags. This match is more than
enough for real-time streaming of video traffic engineering.
When using theDARmodel, it is sufficient to know themean,
variance, and autocorrelation decay rate of sequence 𝑋

𝑛
.

These parameters can be calculated using a commonly wide
approach in this area, proven to be efficient in a variety of
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Table 1: Statistics for Aviator (22min) and Jethro Tull (30,55min) in unconstrained mode, constant quantizer 𝑄.

𝑄
Aviator Jethro

Rate Mean Variance 𝛼 𝛽 Rate Mean Variance 𝛼 𝛽

2 677 3385 5900630 1.94 1743.29 700 3817 6338374 2.30 1660.74
3 430 2153 2788937 1.66 1295.12 456 2488 3088517 2.00 1241.17
4 317 1585 1618647 1.55 1021.52 341 1860 1845143 1.88 991.76
5 240 1201 999173 1.44 832.02 262 1429 1173983 1.74 821.52
6 192 963 669046 1.39 694.59 212 1156 807965 1.66 698.66
7 158 792 470254 1.34 593.49 175 957 580782 1.58 606.70
8 134 672 344746 1.31 512.65 149 816 436341 1.53 534.90
9 114 574 255208 1.29 444.90 127 697 329451 1.48 472.46
10 99 499 195853 1.27 392.65 111 606 257134 1.43 424.27
11 83 430 152470 1.21 354.34 101 525 206670 1.33 393.50
12 74 384 122190 1.21 318.42 90 467 167740 1.30 359.02
13 66 345 98506 1.21 285.53 81 419 137440 1.28 328.06
14 60 313 81893 1.20 261.46 73 379 115710 1.24 305.20
15 55 287 69001 1.19 240.66 67 345 98748 1.21 285.88

studies, for example, [5, 21], that is, using the Gamma density
for modelling the frequency histogram and an exponential
model for fitting the autocorrelation function, for instance,
the compound exponential model proposed in [22]:

𝑓 (𝑥) =
1

𝛽Γ (𝛼)
(
𝑥

𝛽
)

𝛼−1

𝑒
−𝑥/𝛽

, (2)

where Γ(𝛼) = ∫
∞

0

𝑢𝛼−1𝑒−𝑢𝑑𝑢

𝜌
𝑘
= 𝑤𝜆
𝑘

1
+ (1 − 𝑤) 𝜆

𝑘

2
. (3)

4.2. Estimation of the DAR Parameters for U-VBR Traffic.
Under the context of encoding video with a constant quan-
tizer, that is, none rate control scheme is employed, we
statistically analysed the resulting U-VBR video data for a
quantizer 𝑞 range between 2 and 15 (for values of 𝑞 > 15

video quality was suppressed for the selected video size).
We present here results for the video data of Aviator and
Jethro Tull concert in Table 1. With reference to this table,
it is easily observed that, in all cases, the mean bit rate of
the video streams is decaying along with the increase of the
quantizer value. This is normal as for higher quantization
values compensation criteria are adjusted in order to achieve
lower frame sizes and as a consequence lower quality video.
Although this appear to be a trivial result, to the best
knowledge of these authors, not an analytical function has
been proposed in the literature to express the relation of these
two parameters. Given the above and the results of Table 1, the
following questions arose naturally (and their answers were
pursued) during data analysis.

(i) What is the form of the frequency histogram and
of the autocorrelation function of the frame-size
sequence for all quantization values? Could a com-
mon model be applied for all cases?

(ii) Is the DAR model applicable to the measured data?
If, yes; are the modelling parameters (mean, variance,

and decay rate) related somehow to the quantization
value?

(iii) What is the type of the function that relates bit rate
with quantization value?

In brief, the answers to these questions, as supported by
consistence evidence from the experiments’ results, are as
follows: the sequence of frame sizes for all cases 𝑞 = 2–15
exhibits an autocorrelation function that decays exponen-
tially to zero with approximately the same autocorrelation
decay rate value as calculated via (3) and a frequency
histogram that can be fitted successfully by a Gamma density
from (2) using the method of moments: if𝑚 is the mean and
V the variance of the sample sequence 𝑋

𝑛
, then 𝛼 = 𝑚2/V,

𝛽 = V/𝑚. In Figure 3, the autocorrelation graphs are plotted
for indicative quantization values for Aviator (𝑞 = 2, 5, 8, 11)
where it is noticed that all graphs present similar decay rates, a
claim thatwas further verified by applying a least squares fit to
the model of (3) where the critical parameter 𝑟ℎ𝑜 was found
to be equal to 0.9981 for all cases. Concerning the frequency
frame-size histograms, the moments matching method gave
satisfactory fitting results (we show indicative q-q plot results
for Aviator and Jethro Tull (𝑞 = 5, 8 in Figure 2). The
corresponding 𝛼 and 𝛽 parameters of the Gamma density (2)
are presented in Table 1.

What is of great importance, at this moment, is to find
a simple rule that relates the estimation of the modelling
parameters to the quantization value. A first step towards this
direction is to try to model the empirical data of Table 1.

Consider,

𝑅
𝑞
= �̂�(𝑞 − 1)

−𝑧
1 , 𝑞 = 2, 3, . . . , 31, (4)

where 𝑧
1
was found to be approximately equal to 0.81 for all

cases and �̂� = 𝑅
2
is the rate of the raw video, that is, the video

with the higher quality under the given encoding scenario.
The above equation also holds for the mean frame size of
the sequence 𝑚, that is, 𝑚

𝑞
= �̂�(𝑞 − 1)

−𝑧. Equation (4) is a
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Figure 1: Mean video bit rate and quantization.

two-parameter power function that provides a satisfactory fit
as shown in Figure 1 for both samples (Aviator and Jethro
Tull). However, towards a more accurate representation of
the sample data a three-parameter power equation was also
tested, with a least square fit, as follows:

𝑅
𝑞
= (�̂� + 𝜀) (𝑞 − 1)

−𝑧
2 − 𝜀, 𝑞 = 2, 3, . . . , 31, (5)

where 𝜀 values were found to be in the area [140, 150] and
𝑧
2

= 0.54 for all cases. With 𝜀 = 150, a fit via (5) is
presented in Figure 1 for Aviator and Jethro Tull. However,
for simplicity reasons, in the analysis to follow, we will use
the two-parameter model since it is simpler (a more careful
analysis upon the 𝜀 has to be conducted before adoption of
the “pow3” model).
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Figure 2: Frequency histograms, moments fit, and q-q plots.
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Figure 3: Autocorrelation graphs and fit for quantizer values 𝑞 = 2, 5, 8, and 11 for Aviator.

On the basis of the model “pow2” (4), as an analytical
function that relates the mean frame size of the sequence to
the quantization value, and taking into account the property
of the Gamma density𝑚 = 𝛼𝛽, similarly we have

𝛼
𝑞
= �̂�(𝑞 − 1)

−𝑧
𝛼 , 𝛽

𝑞
= �̂�(𝑞 − 1)

−𝑧
𝛽 ,

𝑞 = 2, 3, . . . , 31,

(6)

where �̂� = 𝛼
2
, �̂� = 𝛽

2
, 𝑧
𝛼
= 0.21, and 𝑧

𝛽
= 0.6. Since𝑚 = 𝛼𝛽,

it is expected to hold 𝑧 = 𝑧
𝛼
+ 𝑧
𝛽
.

On the basis of (4) and (6), a relation between theGamma
modelling parameters and the quantizer has been established,
with an a priori knowledge of the maximum rate �̂�. Hence,
only an off-linemeasurement of the video at 𝑞 = 2 is adequate
in order to estimate some few meaningful parameters for all
traces encoded with a constant quantizer 𝑞 = 𝑖 with 𝑖 =
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Figure 4: (a) Complementary buffer size distribution; fluid-flow model for Aviator 𝑞 = 5 (b) complementary buffer size distribution; fluid
flow-model for Jethro 𝑞 = 10.

3, 4, . . . , 31. These are the mean bit rate (or mean frame size)
given by (4) and the autocorrelation decay rate which has
equal values for all values of 𝑞.

Towards a validation of the above method, we exam-
ine two simple scenarios. Given the statistics of the trace
𝐴V𝑖𝑎𝑡𝑜𝑟, 𝑞 = 2, acquired by an off-line measurement, we
estimate the DAR modelling parameters of the video trace
with 𝑞 = 5, that is, 𝛼

5
, 𝛽
5
, and 𝜌. From (6), we have 𝛼

5
=

1.45, 𝛽
5
= 758.81, and 𝜌 = 0.981 as calculated for all cases

via (3). As can be concluded from Table 1, the values of 𝛼
5

and 𝛽
5
are approximately close to the actual ones. With the

same analysis for movie Jethro, we have, for 𝑞 = 10 trace,
𝛼
10

= 1.4499, 𝛽
10

= 444.3817, and 𝜌 = 0.9939. The above
parameters fed the DAR model (1) for each trace separately.
The resulting model is called “Approx.” Another model was
created, too, where the 𝛼 and 𝛽 parameters were calculated
via the moment matching method by means of the actual
trace (see Table 1, 𝛼

5
= 1.44, 𝛽

5
= 832.02 for Aviator,

𝑞 = 5 and 𝛼
10

= 1.43, 𝛽
10

= 424.27 for Jethro, 𝑞 = 10),
to be referenced as the “Moments” model. Then, following
the fluid-flow approach via the Continuous Markov Chain
model C-DAR model [29, 30], we calculated the buffer size
distribution in a single-server queueing scenario with a com-
mon traffic intensity equal to 0.85.Thismethod is analytically
described in a previous study [31] (see Section 3.3) where
the important literature references are also presented. More
explicitly, we consider a single-server queueing system fed
by video traffic as a Markov modulated rate process with a
finite number of states and transition rate matrix from the

C-DAR model using the infinite buffer assumption. A trace-
driven simulation—under an identical queuing testbed—was
also conducted for both traces (sample). The complementary
buffer size distributions are plotted in Figure 4 ((a): Aviator,
(b): Jethro). With reference to these figures, it is seen that the
“Approx” and “Moments” graphs deviate at a small percentage
in both cases. This was expected since their mean rates differ
as a property of the difference of the 𝛼 and 𝛽 parameters
(𝑚 = 𝛼𝛽). With respect to queueing, both models are
conservative—in terms of convergence to the sample—as a
consequence of the choice of 𝜌 based on the slow decay of the
autocorrelation function of the sample. However, if an upper
target bound is a priori given, that is, a worst case scenario
(usually the case of the section to follow) for single source
video traffic, for example, 𝑅

𝑤
, the “Approx” model could be

adjusted to the certain mean rate by means of multiplying the
DAR rate states with the factor 𝑅

𝑤
/𝑅
𝑞
.

4.3. Estimation of the DAR Parameters for C-VBR Traffic.
We present here the results for the constrained counterpart
traffic; see Table 2 for Aviator and Jethro Tull concert movies
encoded under a rate control scheme (variable quantization)
with certain rate constraints at 100, 200, and 400 kbps. A
similar analysis to that of the previous subsection leads to
some first conclusions concerning the statistical character-
istics of constrained vbr traffic. Briefly, the autocorrelation
function appeared to decay faster (compare to the u-vbr case)
to zero for the first 200 lags. In low bit rate cases, for example,
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Table 2: Statistics for Aviator (22min) and Jethro Tull (30,55min) in rate control mode.

Movie Aviator Jethro
Target rate 100 200 400 100 200 400
Mean rate 96 196 397 96 197 399
Mean 484 984 1988 481 981 1984
Variance 74471 220500 1064400 122710 365535 1253100
Moments

𝛼 3.15 4.39 3.71 1.89 2.63 3.14
𝛽 153.76 224.06 535.48 255.00 372.58 631.72

C-LVMAX
𝛼 8.73 8.55 5.16 8.74 8.41 7.27
𝛽 55.92 117.63 382.39 54.84 118.53 283.47

0 5 10 15 20 25 30 35
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Quantization

Pr
ob

ab
ili

ty

Aviator, 𝑅 = 100 kbps

(a)

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

Lags

Au
to

co
rr

el
at

io
n

250

Aviator, 𝑅 = 100 kbps

(b)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Quantization

Pr
ob

ab
ili

ty

11

Aviator, 𝑅 = 400kbps

(c)

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lags

Au
to

co
rr

el
at

io
n

Aviator, 𝑅 = 400kbps

250

(d)

Figure 5: Constrained traffic, quantization histograms, and autocorrelation graphs.
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Figure 6: Constrained traffic, frame-size histograms, and q-q plots of moments matching method.
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Figure 7: Constrained traffic, Worse Case model.

encoding at a target rate of 100 or 200 kbps, this property was
even stronger giving rough indications of uncorrelated traffic
(calling for an𝑀/𝐺/∞model to be applied). However, in the
400 kbps encoding case, frame correlation values were higher
and a least squares fit to (3) gave autocorrelation decay rate
values approximately equal to 0.9951. To find a reasonable
explanation for the above, the sequence of the quantization
values was also examined for each case, and the correspond-
ing quantization histograms were plotted (see Figure 5). In
the case of 𝑅 = 100 kbps, the quantization values followed

a Gaussian (bell-shaped) histogram whereas in the case of
𝑅 = 400 kbps an asymmetrical (more narrow) histogram
is exhibited; that is, the majority of q-values are between 2
and 5. Hence, the variance of the quantization sequence is a
measure of the correlation of the frame sequence. However,
since an a priori knowledge of the quantization sequence
is not given, for our analysis in this paper, and taking into
account that with respect to queueing what matters the most
is the long-term trend of the autocorrelation function; its
conservative approach to consider correlated models for all
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cases by selecting the autocorrelation decay rare value from
the analysis of the unconstrained counterpart 𝑞 = 2 trace.

The frequency histograms for c-vbr traffic have Gamma
formmore narrow and tall compared to the counterpart cases
of u-vbr traffic, that is, the traffic is mostly concentrated
around the target mean rate (see Figure 6 for the case of
Aviator with a target rate of 100 kbps). With reference to this
figure, it is observed that the moments matching method
fails to meet the characteristics of the sample’s histogram
(approximately divergent results hold for the other movies
too in c-vbr mode). This phenomenon was also presented
in [22, 31] where H.261 and H.263 videoconference traffic
in multipoint sessions was analysed. In both studies, due
to rate constraints imposed by a video server (multipoint
control units/gatekeepers), the video traffic exhibited similar
characteristics. In order to overcome the fitting problems
of the moments method, the authors estimated different
parameters of the Gamma family. The C-LVMAX model,
presented in both studies, appeared to have a stable behaviour
in cases of c-vbr traffic. This method relates the peak of
the histogram’s convolution to the location at which the
Gammadensity achieves itsmaximumand to the value of this
maximum. The values of the shape and scale parameters of
the Gamma density are derived from 𝛼 = (2𝜋�̂�

2

�̂�
2

+ 1)/2

and 𝛽 = 1/(2𝜋�̂��̂�
2

), where �̂� is the unique maximum of
the histogram’s convolution density at �̂�. Numerical values
for this fit appear also in Table 2, and the corresponding
q-q plots, demonstrating the dominance of the model, are
shown in Figure 6. From the values of the C-LVMAXGamma
parameters, it is also observed that the shape parameter 𝛼

has larger values compared to the ones of the “moments”
model. This explains in an analytical way the narrowness of
the frame-size histogrampropertywe have already noted.The
specific model, though demands the full-histogram informa-
tion (i.e., the actual trace), hence, separatesmeasurements for
each constraint scenario of mean rate 𝑅. In the paragraph to
follow, we propose a simple method towards an approximate
estimation of the Gamma parameters of c-vbr video traffic.

Within the context of the dominance of the C-LVMAX
model for c-vbr traffic, we adopt in this paper—for this type
of traffic—the idea in [13] (Section 6.3.2, p. 40). According to
this paper, an approach towards modelling contrained video
traces is to “assume worst case sources, operating close to
the maximum capacity and then characterize these sources.”
Based on this idea, we considered as a “worst case” source at a
constrain rare 𝑅

𝑤
the counterpart u-vbr trace with mean rate

close to 𝑅
𝑤
. From (4) and (6) it is simple to calculate 𝛼 and 𝛽

for a certain trace of rate 𝑅
𝑤

̸= 𝑅
𝑞
.

Consider,

𝛼
𝑅
𝑤

= �̂�(
𝑅
𝑤

�̂�
)
−𝑧
𝛼
/𝑧

, 𝛽
𝑅
𝑤

= �̂�(
𝑅
𝑤

�̂�
)
−𝑧
𝛽
/𝑧

,

𝑞 = 2, 3, . . . , 31.

(7)

However, the values of the above parameters correspond
to unconstrained video traceswhich—as described in the cor-
responding section—exhibit frequency histograms of small
shape 𝛼 values (𝛼 < 2, see Table 1) while for the constrained

traces the shape values where found to be larger (𝛼 > 5, as
given by C-LVMAX; see Table 2). Based on that, the fit of the
sample c-vbr histogram via the parameters of (7) would be
divergent, as shown in Figure 7. To overcome this problem,
we adjust the above parameters so as to increase shape and
reduce scale by a factor equal to 5, that is, adjusted shape 5𝛼

𝑅
𝑤

and adjusted scale 𝛽
𝑅
𝑤

/5. The improved fitting results appear
in Figure 7 (where 𝛼

𝑅
𝑤

= 1.4142 and 𝛽
𝑅
𝑤

= 706.4866 for the
Worse Case model and 𝛼

𝑅
𝑤

= 7.0710 and 𝛽
𝑅
𝑤

= 141.2973).

5. Conclusions

In this paper, we proposed methods for selecting the mod-
elling parameters of H.263-quantized video traffic under
two different encoding scenarios. For videos encoded with
a constant quantization step (unconstrained), we conclude
that a two-parameter power relation holds between the
exhibited video bit rate and the quantizer value and that
the autocorrelation decay rate remains constant for all cases.
On the basis of these results, we propose a generic method
for estimating the modelling parameters of unconstrained
traffic by means of measuring the statistics of the single
“raw” video trace. For rate-controlled video (constrained),
we propose an approximate method based on the adjustment
of the “shape” parameter of the counterpart—with respect
to rate—unconstrained video trace. The convergence of the
constructed models is assessed via queuing simulations. On
the assumption that the popular MPEG-4 encoders like
XVID, DIVX usually employ identical H.263 quantization
and rate control schemes, it is expected that the results of this
paper also hold for the MPEG-4 part 2 family.
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